Hướng dẫn giải Bài 8 (Trang 100 SGK Toán Hình học 12)
<p>Trong không gian Oxyz cho các điểm A(1; 0; -1), B(3; 4; -2), C(4;-1;1), D(3; 0 ;3)</p>
<p>a) Chứng minh rằng A, B, C, D không đồng phẳng.</p>
<p>b) Viết phương trình mặt phẳng (ABC) và tính khoảng cách từ D đến mặt phẳng (ABC).</p>
<p>c) Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD.</p>
<p>d) Tính thể tích tứ diện ABCD.</p>
<p><strong>Giải:</strong></p>
<p><strong>a)</strong> Ta có <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo> </mo><mo>=</mo><mo> </mo><mfenced><mrow><mn>2</mn><mo>;</mo><mn>4</mn><mo>;</mo><mo>-</mo><mn>1</mn></mrow></mfenced><mo>,</mo><mo> </mo><mover><mrow><mi>A</mi><mi>c</mi></mrow><mo>→</mo></mover><mo> </mo><mo>=</mo><mo> </mo><mfenced><mrow><mn>3</mn><mo>;</mo><mo>-</mo><mn>1</mn><mo>;</mo><mn>2</mn></mrow></mfenced><mo>,</mo><mo> </mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>→</mo></mover><mo> </mo><mo>=</mo><mo> </mo><mfenced><mrow><mn>2</mn><mo>;</mo><mn>0</mn><mo>;</mo><mn>4</mn></mrow></mfenced></math></p>
<p>Ta có: <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mfenced><mrow><mn>7</mn><mo>;</mo><mo>-</mo><mn>7</mn><mo>;</mo><mo>-</mo><mn>14</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></mrow></mfenced><mo> </mo><mo>.</mo><mover><mrow><mo> </mo><mi>A</mi><mi>D</mi></mrow><mo>→</mo></mover><mo>=</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>7</mn><mo>+</mo><mn>4</mn><mo>(</mo><mo>-</mo><mn>14</mn><mo>)</mo><mo>=</mo><mo>-</mo><mn>42</mn><mo>≠</mo><mn>0</mn><mo>.</mo></math></p>
<p>Vậy A, B, C, D không đồng phẳng.</p>
<p><strong>b) </strong>Mp(ABC) đi qua A có vecto pháp tuyến <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>n</mi><mo>→</mo></mover><mo> </mo><mo>=</mo><mfenced><mrow><mn>1</mn><mo>;</mo><mo>-</mo><mn>1</mn><mo>;</mo><mo>-</mo><mn>2</mn></mrow></mfenced></math></p>
<p>Vậy (ABC) có phương trình là:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>(</mo><mi>x</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>−</mo><mn>1</mn><mo>(</mo><mi>y</mi><mo>−</mo><mn>0</mn><mo>)</mo><mo>−</mo><mn>2</mn><mo>(</mo><mi>z</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>0</mn><mo>⇔</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>−</mo><mn>2</mn><mi>z</mi><mo>−</mo><mn>3</mn><mo>=</mo><mn>0</mn></math></p>
<p>Khoảng cách từ D đến mặt phẳng (ABC) là:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>(</mo><mi>D</mi><mo>,</mo><mo>(</mo><mi>A</mi><mi>B</mi><mi>C</mi><mo>)</mo><mo>)</mo><mo>=</mo><mfrac><mfenced open="|" close="|"><mrow><mn>3</mn><mo>-</mo><mn>6</mn><mo>-</mo><mn>3</mn></mrow></mfenced><msqrt><mn>1</mn><mo>+</mo><mn>1</mn><mo>+</mo><mn>4</mn></msqrt></mfrac><mo>=</mo><msqrt><mn>6</mn></msqrt></math></p>
<p><strong>c) </strong>Gọi (S) là phương trình mặt cầu ngoại tiếp tứ diện ABCD.</p>
<p>Giả sử phương trình (S) có dạng: <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>-</mo><mn>2</mn><mi>b</mi><mi>y</mi><mo>-</mo><mn>2</mn><mi>c</mi><mi>z</mi><mo> </mo><mo>+</mo><mi>d</mi><mo>=</mo><mn>0</mn></math>, điều kiện <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>+</mo><msup><mi>c</mi><mn>2</mn></msup><mo>-</mo><mi>d</mi><mo>></mo><mn>0</mn></math>(*)</p>
<p>Do (S) đi qua 4 điểm A, B, C, D nên ta có:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mtable><mtr><mtd><mn>2</mn><mo>−</mo><mn>2</mn><mi>a</mi><mo>+</mo><mn>2</mn><mi>c</mi><mo>+</mo><mi>d</mi><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>29</mn><mo>−</mo><mn>6</mn><mi>a</mi><mo>−</mo><mn>8</mn><mi>b</mi><mo>+</mo><mn>4</mn><mi>c</mi><mo>+</mo><mi>d</mi><mo>=</mo><mo> </mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>18</mn><mo>-</mo><mn>8</mn><mi>a</mi><mo>+</mo><mn>2</mn><mi>b</mi><mo>−</mo><mn>2</mn><mi>c</mi><mo>+</mo><mi>d</mi><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn></mtd></mtr></mtable></mtd></mtr><mtr><mtd><mn>18</mn><mo>−</mo><mn>6</mn><mi>a</mi><mo>−</mo><mn>6</mn><mi>c</mi><mo>+</mo><mi>d</mi><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mfenced><mo>⇔</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mtable><mtr><mtd><mn>4</mn><mi>a</mi><mo>+</mo><mn>8</mn><mi>c</mi><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>−</mo><mn>8</mn><mi>b</mi><mo>+</mo><mi>c</mi><mo>=</mo><mo> </mo><mn>11</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mi>a</mi><mo>+</mo><mn>2</mn><mi>b</mi><mo>−</mo><mn>4</mn><mi>c</mi><mo>=</mo><mo> </mo><mn>0</mn></mtd></mtr></mtable></mtd></mtr><mtr><mtd><mi>d</mi><mo>=</mo><mn>6</mn><mi>a</mi><mo>+</mo><mn>6</mn><mi>c</mi><mo>-</mo><mn>18</mn></mtd></mtr></mtable></mfenced><mo>⇔</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mtable><mtr><mtd><mi>a</mi><mo>=</mo><mn>3</mn></mtd></mtr><mtr><mtd><mi>b</mi><mo>=</mo><mn>2</mn></mtd></mtr><mtr><mtd><mi>c</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd></mtr></mtable></mtd></mtr><mtr><mtd><mi>d</mi><mo>=</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math></p>
<p>Ta có : <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>+</mo><msup><mi>c</mi><mn>2</mn></msup><mo>-</mo><mi>d</mi><mo>=</mo><mfrac><mn>41</mn><mn>4</mn></mfrac><mo>></mo><mn>0</mn></math></p>
<p>Vậy phương trình mặt cầu ngoại tiếp tứ diện ABCD là:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>4</mn><mi>y</mi><mo>-</mo><mi>z</mi><mo>+</mo><mn>3</mn><mo>=</mo><mn>0</mn></math></p>
<p><strong>d)</strong> Thể tích tứ diện ABCD là:<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mfenced open="|" close="|"><mrow><mfenced open="[" close="]"><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>;</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></mrow></mfenced><mo>.</mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>→</mo></mover></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mfenced open="|" close="|"><mrow><mo>-</mo><mn>42</mn></mrow></mfenced><mo>=</mo><mn>7</mn></math></p>
<p> </p>
Hướng dẫn Giải Bài 8 (trang 100, SGK Toán 12, Hình học)