Ôn tập cuối năm
Hướng dẫn giải Bài 13 (Trang 101 SGK Toán Hình học 12)
<p>Trong kh&ocirc;ng gian Oxyz, cho hai đường thẳng:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>d</mi><mn>1</mn></msub><mo>:</mo><mo>&#160;</mo><mfenced open="{" close=""><mtable><mtr><mtd><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#8722;</mo><mn>1</mn><mo>+</mo><mn>3</mn><mi>t</mi></mtd></mtr><mtr><mtd><mi>y</mi><mo>=</mo><mn>1</mn><mo>+</mo><mn>2</mn><mi>t</mi></mtd></mtr><mtr><mtd><mi>z</mi><mo>=</mo><mn>3</mn><mo>&#8722;</mo><mn>2</mn><mi>t</mi></mtd></mtr></mtable></mfenced><mo>&#160;</mo><msub><mi>d</mi><mn>2</mn></msub><mo>:</mo><mo>&#160;</mo><mfenced open="{" close=""><mtable><mtr><mtd><mi>x</mi><mo>&#160;</mo><mo>=</mo><mi>t</mi><mo>'</mo></mtd></mtr><mtr><mtd><mi>y</mi><mo>=</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>'</mo></mtd></mtr><mtr><mtd><mi>z</mi><mo>=</mo><mo>-</mo><mn>3</mn><mo>+</mo><mn>2</mn><mi>t</mi><mo>'</mo></mtd></mtr></mtable></mfenced></math></p> <p>a) Chứng minh d<sub>1</sub>&nbsp;v&agrave; d<sub>2</sub>&nbsp;c&ugrave;ng thuộc một mặt phẳng.</p> <p>b) Viết phương tr&igrave;nh mặt phẳng đ&oacute;.​</p> <p><strong>Giải&nbsp;</strong></p> <p><strong>a)&nbsp;</strong></p> <p>Giải hệ phương tr&igrave;nh:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable><mtr><mtd><mo>&#8722;</mo><mn>1</mn><mo>+</mo><mn>3</mn><mi>t</mi><mo>=</mo><mi>t</mi><mo>'</mo></mtd></mtr><mtr><mtd><mn>1</mn><mo>+</mo><mn>2</mn><mi>t</mi><mo>=</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>'</mo></mtd></mtr><mtr><mtd><mn>3</mn><mo>&#8722;</mo><mn>2</mn><mi>t</mi><mo>=</mo><mo>-</mo><mn>3</mn><mo>+</mo><mn>2</mn><mi>t</mi><mo>'</mo></mtd></mtr></mtable></mfenced><mo>&#8660;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>t</mi><mo>=</mo><mn>1</mn></mtd></mtr><mtr><mtd><mi>t</mi><mo>'</mo><mo>=</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math></p> <p>Vậy hai đường thẳng d<sub>1</sub>&nbsp;v&agrave; d<sub>2</sub> cắt nhau tại <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>(</mo><mn>2</mn><mo>;</mo><mn>3</mn><mo>;</mo><mn>1</mn><mo>)</mo></math>&rArr; d<sub>1</sub>&nbsp;v&agrave; d<sub>2</sub>&nbsp;c&ugrave;ng thuộc một mặt phẳng.</p> <p><strong>b)</strong>&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>d</mi><mn>1</mn></msub><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><msub><mi>d</mi><mn>2</mn></msub></math> lần lượt c&oacute; vectơ chỉ phương l&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><msub><mi>a</mi><mn>1</mn></msub><mo>&#8594;</mo></mover><mo>=</mo><mfenced><mrow><mn>3</mn><mo>;</mo><mn>2</mn><mo>;</mo><mo>-</mo><mn>2</mn></mrow></mfenced><mo>,</mo><mo>&#160;</mo><mover><msub><mi>a</mi><mn>2</mn></msub><mo>&#8594;</mo></mover><mo>=</mo><mfenced><mrow><mn>1</mn><mo>;</mo><mn>0</mn><mo>;</mo><mn>2</mn></mrow></mfenced></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mrow><mover><msub><mi>a</mi><mn>1</mn></msub><mo>&#8594;</mo></mover><mo>,</mo><mover><msub><mi>a</mi><mn>2</mn></msub><mo>&#8594;</mo></mover></mrow></mfenced><mo>=</mo><mo>(</mo><mn>6</mn><mo>;</mo><mo>&#8722;</mo><mn>8</mn><mo>;</mo><mn>1</mn><mo>)</mo></math></p> <p>Mặt phẳng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>&#945;</mi><mo>)</mo></math> đi qua&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>(</mo><mn>2</mn><mo>;</mo><mn>3</mn><mo>;</mo><mn>1</mn><mo>)</mo></math> v&agrave; c&oacute; vectơ ph&aacute;p tuyến l&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>n</mi><mo>&#8594;</mo></mover><mo>=</mo><mfenced open="[" close="]"><mrow><mover><msub><mi>a</mi><mn>1</mn></msub><mo>&#8594;</mo></mover><mo>,</mo><mover><msub><mi>a</mi><mn>2</mn></msub><mo>&#8594;</mo></mover></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>(</mo><mn>6</mn><mo>;</mo><mo>&#8722;</mo><mn>8</mn><mo>;</mo><mn>1</mn><mo>)</mo></math></p> <p>Vậy phương tr&igrave;nh tổng qu&aacute;t của mặt phẳng<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>&#945;</mi><mo>)</mo><mo>&#160;</mo><mi>c</mi><mi>h</mi><mi>&#7913;</mi><mi>a</mi><mo>&#160;</mo><msub><mi>d</mi><mn>1</mn></msub><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><msub><mi>d</mi><mrow><mn>2</mn><mo>&#160;</mo></mrow></msub><mi>l</mi><mi>&#224;</mi><mo>&#160;</mo><mo>:</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>(</mo><mi>x</mi><mo>&#8722;</mo><mn>2</mn><mo>)</mo><mo>&#8722;</mo><mn>8</mn><mo>(</mo><mi>y</mi><mo>&#8722;</mo><mn>3</mn><mo>)</mo><mo>+</mo><mn>1</mn><mo>(</mo><mi>z</mi><mo>&#8722;</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>0</mn><mo>&#8660;</mo><mn>6</mn><mi>x</mi><mo>&#8722;</mo><mn>8</mn><mi>y</mi><mo>+</mo><mi>z</mi><mo>+</mo><mn>11</mn><mo>=</mo><mn>0</mn></math></p> <p>&nbsp;</p> <p>&nbsp;</p>
Hướng dẫn Giải Bài 13 (trang 100, SGK Toán 12, Hình học)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 13 (trang 100, SGK Toán 12, Hình học)
GV: GV colearn