Ôn tập cuối năm
Hướng dẫn giải Bài 16 (Trang 102 SGK Toán Hình học 12)
<p>Trong kh&ocirc;ng gian Oxyz cho mặt phẳng (&alpha;) c&oacute; phương tr&igrave;nh 4x+y+2z+1 =0 v&agrave; mặt phẳng (&beta;) c&oacute; phương tr&igrave;nh 2x &ndash; 2y + z + 3 = 0</p> <p>a) Chứng minh rằng&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; margin: 0px; padding: 1px 0px; overflow-wrap: normal; word-break: break-word; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 18.08px; letter-spacing: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;/math&gt;"><span id="MJXc-Node-11" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-12" class="mjx-mrow"><span id="MJXc-Node-13" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">(</span></span><span id="MJXc-Node-14" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">&alpha;</span></span><span id="MJXc-Node-15" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">) </span></span></span></span></span>cắt&nbsp;<span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; margin: 0px; padding: 1px 0px; overflow-wrap: normal; word-break: break-word; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 18.08px; letter-spacing: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;mi&gt;&amp;#x03B2;&lt;/mi&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;/math&gt;"><span id="MJXc-Node-16" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-17" class="mjx-mrow"><span id="MJXc-Node-18" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">(</span></span><span id="MJXc-Node-19" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">&beta;</span></span><span id="MJXc-Node-20" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">)</span></span></span></span></span>.</p> <p>b) Viết phương tr&igrave;nh tham số của đường thẳng d l&agrave; giao của (&alpha;) v&agrave;&nbsp;<span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; margin: 0px; padding: 1px 0px; overflow-wrap: normal; word-break: break-word; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 18.08px; letter-spacing: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;mi&gt;&amp;#x03B2;&lt;/mi&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">(</mo><mi>&beta;</mi><mo stretchy="false">)</mo></math></span></span>.</p> <p>c) T&igrave;m điểm M' l&agrave; ảnh của M(4; 2; 1) qua ph&eacute;p đối xứng qua mặt phẳng&nbsp;<span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; margin: 0px; padding: 1px 0px; overflow-wrap: normal; word-break: break-word; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 18.08px; letter-spacing: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;/math&gt;"><span id="MJXc-Node-26" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-27" class="mjx-mrow"><span id="MJXc-Node-28" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">(</span></span><span id="MJXc-Node-29" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">&alpha;</span></span><span id="MJXc-Node-30" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">)</span></span></span></span></span>.</p> <p>d) T&igrave;m điểm N' l&agrave; ảnh của N(0; 2; 4) qu&aacute; ph&eacute;p đối xứng qua đường thẳng d.</p> <p><strong>Giải&nbsp;</strong></p> <p><strong>a) </strong>Mp (&alpha;) c&oacute; vectơ ph&aacute;p tuyến&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><msub><mi>n</mi><mi>&#945;</mi></msub><mo>&#8594;</mo></mover><mo>=</mo><mo>(</mo><mn>4</mn><mo>;</mo><mn>1</mn><mo>;</mo><mn>2</mn><mo>)</mo></math></p> <p>Mp (&beta;) c&oacute; vectơ ph&aacute;p tuyến&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><msub><mi>n</mi><mi>&#946;</mi></msub><mo>&#8594;</mo></mover><mo>=</mo><mo>(</mo><mn>2</mn><mo>;</mo><mo>-</mo><mn>2</mn><mo>;</mo><mn>1</mn><mo>)</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><msub><mi>n</mi><mi>&#945;</mi></msub><mo>&#8594;</mo></mover><mo>,</mo><mover><msub><mi>n</mi><mi>&#946;</mi></msub><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>&#160;</mo></math>kh&ocirc;ng c&ugrave;ng phương n&ecirc;n (&alpha;) cắt (&beta;).</p> <p><strong>b)</strong>&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mrow><mover><msub><mi>n</mi><mi>&#945;</mi></msub><mo>&#8594;</mo></mover><mo>,</mo><mover><msub><mi>n</mi><mi>&#946;</mi></msub><mo>&#8594;</mo></mover></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mfenced><mrow><mn>5</mn><mo>;</mo><mn>0</mn><mo>;</mo><mo>&#8722;</mo><mn>10</mn></mrow></mfenced><mo>=</mo><mn>5</mn><mo>(</mo><mn>1</mn><mo>;</mo><mn>0</mn><mo>;</mo><mo>&#8722;</mo><mn>2</mn><mo>)</mo></math></p> <p>Gọi&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>&#945;</mi><mo>&#160;</mo><mo>&#8745;</mo><mo>&#160;</mo><mi>&#946;</mi></math></p> <p>Vectơ chỉ phương của d vu&ocirc;ng g&oacute;c với&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><msub><mi>n</mi><mi>&#945;</mi></msub><mo>&#8594;</mo></mover><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mover><msub><mi>n</mi><mi>&#946;</mi></msub><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>&#160;</mo></math></p> <p>N&ecirc;n&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><msub><mi>a</mi><mi>d</mi></msub><mo>&#8594;</mo></mover><mo>=</mo><mfrac><mn>1</mn><mn>5</mn></mfrac><mfenced open="[" close="]"><mrow><mover><msub><mi>n</mi><mi>&#945;</mi></msub><mo>&#8594;</mo></mover><mo>,</mo><mover><msub><mi>n</mi><mi>&#946;</mi></msub><mo>&#8594;</mo></mover><mo>&#160;</mo></mrow></mfenced><mo>=</mo><mfenced><mrow><mn>1</mn><mo>;</mo><mn>0</mn><mo>;</mo><mo>&#8722;</mo><mn>2</mn></mrow></mfenced></math></p> <p>T&igrave;m điểm M tr&ecirc;n d cho x = 0 ta t&igrave;m y, z từ hệ:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>y</mi><mo>+</mo><mn>2</mn><mi>z</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>&#8722;</mo><mn>2</mn><mi>y</mi><mo>+</mo><mi>z</mi><mo>+</mo><mn>3</mn><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mfenced><mo>&#8660;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>y</mi><mo>=</mo><mn>1</mn></mtd></mtr><mtr><mtd><mi>z</mi><mo>=</mo><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mi>&#7853;</mi><mi>y</mi><mo>&#160;</mo><mi>M</mi><mo>(</mo><mn>0</mn><mo>;</mo><mn>1</mn><mo>;</mo><mo>&#8722;</mo><mn>1</mn><mo>)</mo><mo>&#8712;</mo><mi>d</mi></math></p> <p>Phương tr&igrave;nh tham số của d l&agrave;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable><mtr><mtd><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>t</mi></mtd></mtr><mtr><mtd><mi>y</mi><mo>=</mo><mn>1</mn></mtd></mtr><mtr><mtd><mi>z</mi><mo>=</mo><mo>&#8722;</mo><mn>1</mn><mo>&#8722;</mo><mn>2</mn><mi>t</mi></mtd></mtr></mtable></mfenced></math></p> <p><strong>c) </strong>Phương tr&igrave;nh của đường thẳng <span id="MathJax-Element-23-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; margin: 0px; padding: 1px 0px; overflow-wrap: normal; word-break: break-word; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 18.08px; letter-spacing: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #131313; font-family: Quicksand; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi mathvariant=&quot;normal&quot;&gt;&amp;#x0394;&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">&Delta;</mi></math></span></span> đi qua M v&agrave; vu&ocirc;ng g&oacute;c với&nbsp;<span id="MathJax-Element-24-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; margin: 0px; padding: 1px 0px; overflow-wrap: normal; word-break: break-word; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 18.08px; letter-spacing: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #131313; font-family: Quicksand; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">(</mo><mi>&alpha;</mi><mo stretchy="false">)</mo></math></span></span> l&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable><mtr><mtd><mi>x</mi><mo>&#160;</mo><mo>=</mo><mn>4</mn><mo>+</mo><mn>4</mn><mi>t</mi></mtd></mtr><mtr><mtd><mi>y</mi><mo>=</mo><mn>2</mn><mo>+</mo><mi>t</mi></mtd></mtr><mtr><mtd><mi>z</mi><mo>=</mo><mn>1</mn><mo>+</mo><mn>2</mn><mi>t</mi></mtd></mtr></mtable></mfenced></math></p> <p>Để t&igrave;m giao điểm của&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mi>o</mi></msub></math> của &Delta; với (&alpha;) ta giải phương tr&igrave;nh</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>(</mo><mn>4</mn><mo>+</mo><mn>4</mn><mi>t</mi><mo>)</mo><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><mo>+</mo><mo>&#160;</mo><mi>t</mi><mo>&#160;</mo><mo>+</mo><mn>2</mn><mo>(</mo><mn>1</mn><mo>+</mo><mn>2</mn><mi>t</mi><mo>)</mo><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>1</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mn>21</mn><mi>t</mi><mo>&#160;</mo><mo>+</mo><mn>21</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mi>t</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>1</mn></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mi>u</mi><mi>y</mi><mo>&#160;</mo><mi>r</mi><mi>a</mi><mo>&#160;</mo><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>;</mo><mo>&#160;</mo><mi>y</mi><mo>=</mo><mo>&#160;</mo><mn>1</mn><mo>;</mo><mo>&#160;</mo><mi>z</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>1</mn></math></p> <p>Vậy&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mi>o</mi></msub><mfenced><mrow><mn>0</mn><mo>;</mo><mn>1</mn><mo>;</mo><mo>-</mo><mn>1</mn></mrow></mfenced></math></p> <p>V&igrave; M' l&agrave; điểm đối xứng của M qua <span id="MathJax-Element-28-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; margin: 0px; padding: 1px 0px; overflow-wrap: normal; word-break: break-word; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 18.08px; letter-spacing: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #131313; font-family: Quicksand; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">(</mo><mi>&alpha;</mi><mo stretchy="false">)</mo></math></span></span> n&ecirc;n: MM' = 2<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mi>o</mi></msub></math> suy ra M'(-4; 0 ;-3)</p> <p><strong>d)&nbsp;</strong>Mặt phẳng (&gamma;) qua N v&agrave; vu&ocirc;ng g&oacute;c với d c&oacute; phương tr&igrave;nh: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#160;</mo><mo>-</mo><mn>2</mn><mo>(</mo><mi>z</mi><mo>-</mo><mn>4</mn><mo>)</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>2</mn><mi>z</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>8</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn></math>&nbsp;</p> <p>Để t&igrave;m giao điểm <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>N</mi><mi>o</mi></msub></math> của d v&agrave; (&gamma;) ta giải phương tr&igrave;nh:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>2</mn><mo>(</mo><mo>-</mo><mn>1</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>2</mn><mi>t</mi><mo>)</mo><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>8</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mn>5</mn><mi>t</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>10</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mi>t</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>2</mn></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi><mi>h</mi><mi>i</mi><mo>&#160;</mo><mi>&#273;</mi><mi>&#243;</mi><mo>&#160;</mo><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>2</mn><mo>;</mo><mo>&#160;</mo><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>1</mn><mo>;</mo><mo>&#160;</mo><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>3</mn><mo>.</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mi>&#7853;</mi><mi>y</mi><mo>&#160;</mo><msub><mi>N</mi><mi>o</mi></msub><mo>(</mo><mo>-</mo><mn>2</mn><mo>;</mo><mn>1</mn><mo>;</mo><mn>3</mn><mo>)</mo></math></p> <p>V&igrave; N' l&agrave; điểm đối xứng của N qua d n&ecirc;n&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>N</mi><mi>N</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mn>2</mn><mover><mrow><mi>N</mi><msub><mi>N</mi><mi>o</mi></msub></mrow><mo>&#8594;</mo></mover></math></p> <p>Suy ra N'(-4; 0; 2).</p> <p>&nbsp;</p>
Hướng dẫn Giải Bài 16 (trang 100, SGK Toán 12, Hình học)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 16 (trang 100, SGK Toán 12, Hình học)
GV: GV colearn