Thực hành 8 (Trang 14, SGK Toán 10, Tập 1 - Bộ Chân Trời Sáng Tạo mới nhất)
<p><strong>Thực hành 8 (Trang 14, SGK Toán 10, Bộ Chân Trời Sáng Tạo mới nhất, Tập 1)</strong></p>
<p>Xét tính đúng sai và viết mệnh đề phủ định của các mệnh đề sau:</p>
<p>a) <span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2200;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x211D;</mi><mo>,</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&gt;</mo><mn>0</mn><mo>;</mo></math>"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">∀</span></span><span id="MJXc-Node-4" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span><span id="MJXc-Node-5" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">∈<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2200;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x211D;</mi><mo>,</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&gt;</mo><mn>0</mn><mo>;</mo></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ℝ</mi></math></span></span></span></span><span id="MJXc-Node-7" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">, </span></span><span id="MJXc-Node-8" class="mjx-msup MJXc-space1"><span class="mjx-base"><span id="MJXc-Node-9" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span></span><sup><span class="mjx-sup"><span id="MJXc-Node-10" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">2</span></span></span></sup></span><span id="MJXc-Node-11" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">></span></span><span id="MJXc-Node-12" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">0</span></span><span id="MJXc-Node-13" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">;</span></span></span></span></span></p>
<p>b) <span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2203;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x211D;</mi><mo>,</mo><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>5</mn><mi>x</mi><mo>&#x2212;</mo><mn>4</mn><mo>;</mo></math>"><span id="MJXc-Node-14" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-15" class="mjx-mrow"><span id="MJXc-Node-16" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">∃</span></span><span id="MJXc-Node-17" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span><span id="MJXc-Node-18" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">∈<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2200;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x211D;</mi><mo>,</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&gt;</mo><mn>0</mn><mo>;</mo></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ℝ</mi></math></span></span></span></span><span id="MJXc-Node-20" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-21" class="mjx-msup MJXc-space1"><span class="mjx-base"><span id="MJXc-Node-22" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span></span><sup><span class="mjx-sup"><span id="MJXc-Node-23" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">2</span></span></span></sup></span><span id="MJXc-Node-24" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-25" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">5</span></span><span id="MJXc-Node-26" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span><span id="MJXc-Node-27" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R">−</span></span><span id="MJXc-Node-28" class="mjx-mn MJXc-space2"><span class="mjx-char MJXc-TeX-main-R">4</span></span><span id="MJXc-Node-29" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">;</span></span></span></span></span></p>
<p>c) <span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2203;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x2124;</mi><mo>,</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0.</mn></math>"><span id="MJXc-Node-30" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-31" class="mjx-mrow"><span id="MJXc-Node-32" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">∃</span></span><span id="MJXc-Node-33" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span><span id="MJXc-Node-34" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">∈<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2203;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x2124;</mi><mo>,</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0.</mn></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ℤ</mi></math></span></span></span></span><span id="MJXc-Node-36" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-37" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">2</span></span><span id="MJXc-Node-38" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span><span id="MJXc-Node-39" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R">+</span></span><span id="MJXc-Node-40" class="mjx-mn MJXc-space2"><span class="mjx-char MJXc-TeX-main-R">1</span></span><span id="MJXc-Node-41" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-42" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">0.</span></span></span></span></span></p>
<p> </p>
<p><span style="text-decoration: underline;"><em><strong>Hướng dẫn giải</strong></em></span></p>
<p>a) Gọi: P: “<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2200;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x211D;</mi><mo>,</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&gt;</mo><mn>0</mn><mo>;</mo></math>"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">∀</span></span><span id="MJXc-Node-4" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x </span></span><span id="MJXc-Node-5" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">∈ <span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2200;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x211D;</mi><mo>,</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&gt;</mo><mn>0</mn><mo>;</mo></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ℝ</mi></math></span></span></span></span><span id="MJXc-Node-7" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">, </span></span><span id="MJXc-Node-8" class="mjx-msup MJXc-space1"><span class="mjx-base"><span id="MJXc-Node-9" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span></span><sup><span class="mjx-sup"><span id="MJXc-Node-10" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">2</span></span></span></sup></span><span id="MJXc-Node-11" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">></span></span><span id="MJXc-Node-12" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">0</span></span></span></span></span>”.</p>
<p>Chọn x = 0 ∈ ℝ, ta thấy x<sup>2</sup> = 0<sup>2</sup> = 0 > 0 (vô lí). Do đó mệnh đề P sai.</p>
<p>Mệnh đề phủ định của mệnh đề P là <math xmlns="http://www.w3.org/1998/Math/MathML"><menclose notation="top"><mi>P</mi></menclose></math>: “<span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mi>P</mi><mo>&#xAF;</mo></mover><mo>:</mo><mo>&quot;</mo><mo>&#x2203;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x211D;</mi><mo>,</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&#x2264;</mo><mn>0</mn><mo>&quot;</mo></math>"><span id="MJXc-Node-55" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-56" class="mjx-mrow"><span id="MJXc-Node-61" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"><span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2203;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x211D;</mi><mo>,</mo><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>5</mn><mi>x</mi><mo>&#x2212;</mo><mn>4</mn><mo>;</mo></math>"><span id="MJXc-Node-14" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-15" class="mjx-mrow"><span id="MJXc-Node-16" class="mjx-mo">∃</span></span></span></span><span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2200;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x211D;</mi><mo>,</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&gt;</mo><mn>0</mn><mo>;</mo></math>"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-4" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x </span></span><span id="MJXc-Node-5" class="mjx-mo MJXc-space3">∈ <span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2200;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x211D;</mi><mo>,</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&gt;</mo><mn>0</mn><mo>;</mo></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ℝ</mi></math></span></span></span><span id="MJXc-Node-7" class="mjx-mo">, </span><span id="MJXc-Node-8" class="mjx-msup MJXc-space1"><span class="mjx-base"><span id="MJXc-Node-9" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span></span><sup><span class="mjx-sup"><span id="MJXc-Node-10" class="mjx-mn">2</span></span></sup></span><span id="MJXc-Node-11" class="mjx-mo MJXc-space3">></span><span id="MJXc-Node-12" class="mjx-mn MJXc-space3">0”.</span></span></span></span></span></span></span></span></span></p>
<p> </p>
<p>b) Gọi Q: “<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2203;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x211D;</mi><mo>,</mo><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>5</mn><mi>x</mi><mo>&#x2212;</mo><mn>4</mn><mo>;</mo></math>"><span id="MJXc-Node-14" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-15" class="mjx-mrow"><span id="MJXc-Node-16" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">∃</span></span><span id="MJXc-Node-17" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span><span id="MJXc-Node-18" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">∈<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2200;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x211D;</mi><mo>,</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&gt;</mo><mn>0</mn><mo>;</mo></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ℝ</mi></math></span></span></span></span><span id="MJXc-Node-20" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">, </span></span><span id="MJXc-Node-21" class="mjx-msup MJXc-space1"><span class="mjx-base"><span id="MJXc-Node-22" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span></span><sup><span class="mjx-sup"><span id="MJXc-Node-23" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">2</span></span></span></sup></span><span id="MJXc-Node-24" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-25" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">5</span></span><span id="MJXc-Node-26" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span><span id="MJXc-Node-27" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R">−</span></span><span id="MJXc-Node-28" class="mjx-mn MJXc-space2"><span class="mjx-char MJXc-TeX-main-R">4</span></span></span></span></span>”.</p>
<p>Xét phương trình: x<sup>2</sup> = 5x – 4 </p>
<p>⇔ x<sup>2</sup> – 5x + 4 = 0 </p>
<p><mo><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇔</mo></math> </mo><mi>x</mi><mo> </mo><mo>=</mo><mo> </mo><mn>1</mn><mo> </mo><mi>h</mi><mi>o</mi><mi>ặ</mi><mi>c</mi><mo> </mo><mi>x</mi><mo> </mo><mo>=</mo><mo> </mo><mn>4</mn></p>
<p>Ta thấy hai nghiệm 1 và 4 đều là các số thực.</p>
<p>Do đó mệnh đề Q đúng.</p>
<p>Mệnh đề phủ định của mệnh đề Q là: <math xmlns="http://www.w3.org/1998/Math/MathML"><menclose notation="top"><mi>Q</mi></menclose></math> = “<span id="MathJax-Element-8-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mi>Q</mi><mo>&#xAF;</mo></mover><mo>:</mo><mo>&quot;</mo><mo>&#x2200;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x211D;</mi><mo>,</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&#x2260;</mo><mn>5</mn><mi>x</mi><mo>&#x2212;</mo><mn>4</mn><mo>&quot;</mo></math>"><span id="MJXc-Node-107" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-108" class="mjx-mrow"><span id="MJXc-Node-113" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">∀<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2203;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x211D;</mi><mo>,</mo><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>5</mn><mi>x</mi><mo>&#x2212;</mo><mn>4</mn><mo>;</mo></math>"><span id="MJXc-Node-14" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-15" class="mjx-mrow"><span id="MJXc-Node-17" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x </span></span><span id="MJXc-Node-18" class="mjx-mo MJXc-space3">∈ <span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2200;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x211D;</mi><mo>,</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&gt;</mo><mn>0</mn><mo>;</mo></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ℝ</mi></math></span></span></span><span id="MJXc-Node-20" class="mjx-mo">, </span><span id="MJXc-Node-21" class="mjx-msup MJXc-space1"><span class="mjx-base"><span id="MJXc-Node-22" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span></span><sup><span class="mjx-sup"><span id="MJXc-Node-23" class="mjx-mn">2</span></span></sup></span><span id="MJXc-Node-24" class="mjx-mo MJXc-space3">=</span><span id="MJXc-Node-25" class="mjx-mn MJXc-space3">5</span><span id="MJXc-Node-26" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span><span id="MJXc-Node-27" class="mjx-mo MJXc-space2">−4”.</span></span></span></span></span></span></span></span></span></p>
<p> </p>
<p>c) Gọi H: “<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2203;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x2124;</mi><mo>,</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0.</mn></math>"><span id="MJXc-Node-30" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-31" class="mjx-mrow"><span id="MJXc-Node-32" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">∃</span></span><span id="MJXc-Node-33" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x </span></span><span id="MJXc-Node-34" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">∈ <span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2203;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x2124;</mi><mo>,</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0.</mn></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ℤ</mi></math></span></span></span></span><span id="MJXc-Node-36" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">, </span></span><span id="MJXc-Node-37" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">2</span></span><span id="MJXc-Node-38" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span><span id="MJXc-Node-39" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R">+</span></span><span id="MJXc-Node-40" class="mjx-mn MJXc-space2"><span class="mjx-char MJXc-TeX-main-R">1</span></span><span id="MJXc-Node-41" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-42" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">0</span></span></span></span></span>”.</p>
<p>Xét 2x + 1 = 0 <span id="MathJax-Element-10-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D4;</mo><mi>x</mi><mo>=</mo><mo>&#x2212;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#x2209;</mo><mi>&#x2124;</mi></math>"><span id="MJXc-Node-141" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-142" class="mjx-mrow"><span id="MJXc-Node-143" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">⇔ </span></span><span id="MJXc-Node-144" class="mjx-mi MJXc-space3"></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2 </mn></mfrac></math><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn></mn></mfrac><mo>∉ </mo><mi>ℤ</mi></math></span></span></p>
<p>Do đó không tồn tại giá trị nguyên nào của x để 2x + 1 = 0.</p>
<p>Vì vậy mệnh đề H là mệnh đề sai.</p>
<p>Mệnh đề phủ định của mệnh đề H là: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>H</mi><mo>¯</mo></mover></math>: “<span id="MathJax-Element-11-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mi>H</mi><mo>&#xAF;</mo></mover><mo>:</mo><mo>&quot;</mo><mo>&#x2200;</mo><mi>x</mi><mo>&#x2208;</mo><mi>&#x2124;</mi><mo>,</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>&#x2260;</mo><mn>0</mn><mo>&quot;</mo></math>"><span id="MJXc-Node-152" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-153" class="mjx-mrow"><span id="MJXc-Node-159" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">∀</span></span><span id="MJXc-Node-160" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x </span></span><span id="MJXc-Node-161" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">∈ <span id="MathJax-Element-10-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D4;</mo><mi>x</mi><mo>=</mo><mo>&#x2212;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#x2209;</mo><mi>&#x2124;</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ℤ</mi></math></span></span></span></span><span id="MJXc-Node-163" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">, </span></span><span id="MJXc-Node-164" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">2</span></span><span id="MJXc-Node-165" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span><span id="MJXc-Node-166" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R">+</span></span><span id="MJXc-Node-167" class="mjx-mn MJXc-space2"><span class="mjx-char MJXc-TeX-main-R">1</span></span><span id="MJXc-Node-168" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">≠0”.</span></span></span></span></span></p>
Xem lời giải bài tập khác cùng bài
Hoạt động khởi động (Trang 7 SGK Toán 10, Bộ Chân trời sáng tạo, Tập 1)
Xem lời giải
Thực hành 1 (Trang 8, SGK Toán 10, Tập 1, Bộ Chân trời sáng tạo)
Xem lời giải
Thực hành 2 (Trang 8, SGK Toán 10, Tập 1 - Bộ Chân Trời Sáng Tạo mới nhất)
Xem lời giải
Thực hành 3 (Trang 9, SGK Toán 10, Tập 1 - Bộ Chân Trời Sáng Tạo mới nhất)
Xem lời giải
Thực hành 4 (Trang 10, SGK Toán 10, Tập 1 - Bộ Chân Trời Sáng Tạo mới nhất)
Xem lời giải
Thực hành 5 (Trang 12, SGK Toán 10, Tập 1 - Bộ Chân Trời Sáng Tạo mới nhất)
Xem lời giải
Thực hành 6 (Trang 13, SGK Toán 10, Tập 1 - Bộ Chân Trời Sáng Tạo mới nhất)
Xem lời giải
Thực hành 7 (Trang 14, SGK Toán 10, Tập 1 - Bộ Chân Trời Sáng Tạo mới nhất)
Xem lời giải
Hoạt động khám phá 1 (Trang 7 SGK Toán 10, Bộ Chân trời sáng tạo, Tập 1)
Xem lời giải
<span data-v-a7c68f28="">Hoạt động khám phá 2 (Trang 8 SGK Toán 10, Bộ Chân trời sáng tạo, Tập 1)</span>
Xem lời giải
<span data-v-a7c68f28="">Hoạt động khám phá 3 (Trang 9 SGK Toán 10, Bộ Chân trời sáng tạo, Tập 1)</span>
Xem lời giải
<span data-v-a7c68f28="">Hoạt động khám phá 4 (Trang 10 SGK Toán 10, Bộ Chân trời sáng tạo, Tập 1)</span>
Xem lời giải
<span data-v-a7c68f28="">Hoạt động khám phá 5 (Trang 12 SGK Toán 10, Bộ Chân trời sáng tạo, Tập 1)</span>
Xem lời giải
<span data-v-a7c68f28="">Hoạt động khám phá 6 (Trang 13 SGK Toán 10, Bộ Chân trời sáng tạo, Tập 1)</span>
Xem lời giải
Hướng dẫn Giải Bài 1 (Trang 14, SGK Toán 10, Tập 1 - Bộ Chân Trời Sáng Tạo mới nhất)
Xem lời giải
Hướng dẫn Giải Bài 2 (Trang 14, SGK Toán 10, Tập 1 - Bộ Chân Trời Sáng Tạo mới nhất)
Xem lời giải
Hướng dẫn Giải Bài 3 (Trang 14, SGK Toán 10, Tập 1 - Bộ Chân Trời Sáng Tạo mới nhất)
Xem lời giải
Hướng dẫn Giải Bài 4 (Trang 15, SGK Toán 10, Tập 1 - Bộ Chân Trời Sáng Tạo mới nhất)
Xem lời giải
Hướng dẫn Giải Bài 5 (Trang 15, SGK Toán 10, Tập 1 - Bộ Chân Trời Sáng Tạo mới nhất)
Xem lời giải
Hướng dẫn Giải Bài 6 (Trang 15, SGK Toán 10, Tập 1 - Bộ Chân Trời Sáng Tạo mới nhất)
Xem lời giải
Hướng dẫn Giải Bài 7 (Trang 15, SGK Toán 10, Tập 1 - Bộ Chân Trời Sáng Tạo mới nhất)
Xem lời giải