Ôn tập chương III
Hướng dẫn giải Bài 7 (Trang 92 SGK Toán Hình học 12)
<p><strong>7</strong>. Cho điểm <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mfenced><mrow><mo>-</mo><mn>1</mn><mo>;</mo><mo>&#160;</mo><mn>2</mn><mo>;</mo><mo>&#160;</mo><mo>-</mo><mn>3</mn></mrow></mfenced></math>, vecto&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>a</mi><mo>&#8594;</mo></mover><mo>=</mo><mfenced><mrow><mn>6</mn><mo>;</mo><mo>&#160;</mo><mo>-</mo><mn>2</mn><mo>;</mo><mo>&#160;</mo><mo>-</mo><mn>3</mn></mrow></mfenced></math> v&agrave; đường thẳng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> c&oacute; phương tr&igrave;nh&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable><mtr><mtd><mi>x</mi><mo>=</mo><mn>1</mn><mo>+</mo><mn>3</mn><mi>t</mi></mtd></mtr><mtr><mtd><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>+</mo><mn>2</mn><mi>t</mi></mtd></mtr><mtr><mtd><mi>z</mi><mo>=</mo><mn>3</mn><mo>-</mo><mn>5</mn><mi>t</mi></mtd></mtr></mtable></mfenced></math></p> <p>a) Viết phương tr&igrave;nh mặt phẳng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>&#945;</mi></mfenced></math> chứa điểm&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> v&agrave; vu&ocirc;ng g&oacute;c với&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>a</mi><mo>&#8594;</mo></mover></math>.</p> <p>b) T&igrave;m giao điểm của&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>&#945;</mi></mfenced></math>.</p> <p>c) Viết phương tr&igrave;nh đường thẳng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8710;</mo></math> đi qua điểm&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> vu&ocirc;ng g&oacute;c với&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>a</mi><mo>&#8594;</mo></mover></math> v&agrave; cắt đường thẳng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math></p> <p><strong>Giải:</strong></p> <p>a) Mặt phẳng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>&#945;</mi></mfenced></math> đi qua&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mfenced><mrow><mo>-</mo><mn>1</mn><mo>;</mo><mo>&#160;</mo><mn>2</mn><mo>;</mo><mo>&#160;</mo><mo>-</mo><mn>3</mn></mrow></mfenced></math> c&oacute; vecto ph&aacute;p tuyến&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>n</mi><mo>&#8594;</mo></mover><mo>=</mo><mover><mi>a</mi><mo>&#8594;</mo></mover><mo>=</mo><mfenced><mrow><mn>6</mn><mo>;</mo><mo>&#160;</mo><mo>-</mo><mn>2</mn><mo>;</mo><mo>&#160;</mo><mo>-</mo><mn>3</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math></p> <p>n&ecirc;n c&oacute; phương tr&igrave;nh l&agrave;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mn>2</mn><mfenced><mrow><mi>y</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>-</mo><mn>3</mn><mfenced><mrow><mi>z</mi><mo>+</mo><mn>3</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>&#8660;</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>y</mi><mo>+</mo><mn>3</mn><mi>z</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mfenced><mn>1</mn></mfenced></math></p> <p>b) Thay&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>+</mo><mn>3</mn><mi>t</mi><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>+</mo><mn>2</mn><mi>t</mi><mo>,</mo><mo>&#160;</mo><mi>z</mi><mo>=</mo><mn>3</mn><mo>-</mo><mn>5</mn><mi>t</mi></math> v&agrave;o phương tr&igrave;nh&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mn>1</mn></mfenced></math> ta được</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn><mi>t</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mfenced><mrow><mo>-</mo><mn>1</mn><mo>+</mo><mn>2</mn><mi>t</mi></mrow></mfenced><mo>-</mo><mn>3</mn><mfenced><mrow><mn>3</mn><mo>-</mo><mn>5</mn><mi>t</mi></mrow></mfenced><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn><mo>&#8660;</mo><mi>t</mi><mo>=</mo><mn>0</mn></math></p> <p>Khi đ&oacute; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo>&#160;</mo><mi>z</mi><mo>=</mo><mn>3</mn></math>. Vậy&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> cắt&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>&#945;</mi></mfenced></math> tại điểm&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mfenced><mrow><mn>1</mn><mo>;</mo><mo>&#160;</mo><mo>-</mo><mn>1</mn><mo>;</mo><mo>&#160;</mo><mn>3</mn></mrow></mfenced></math>.</p> <p>c) Đường thẳng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8710;</mo></math> đi qua&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> vu&ocirc;ng g&oacute;c với gi&aacute; của&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>a</mi><mo>&#8594;</mo></mover></math> v&agrave; cắt đường thẳng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> ch&iacute;nh l&agrave; đường thẳng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>M</mi></math>.&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8710;</mo></math> c&oacute; vecto chỉ phương l&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mfenced><mrow><mn>2</mn><mo>;</mo><mo>&#160;</mo><mo>-</mo><mn>3</mn><mo>;</mo><mo>&#160;</mo><mn>6</mn></mrow></mfenced></math>.</p> <p>Phương tr&igrave;nh tham số của&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8710;</mo></math> l&agrave;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable><mtr><mtd><mi>x</mi><mo>=</mo><mn>1</mn><mo>+</mo><mn>2</mn><mi>t</mi></mtd></mtr><mtr><mtd><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>-</mo><mn>3</mn><mi>t</mi></mtd></mtr><mtr><mtd><mi>z</mi><mo>=</mo><mn>3</mn><mo>+</mo><mn>6</mn><mi>t</mi></mtd></mtr></mtable></mfenced></math></p>
Hướng dẫn Giải Bài 7 (trang 92, SGK Toán 12, Hình học)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 7 (trang 92, SGK Toán 12, Hình học)
GV: GV colearn