Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Chọn lớp
Lớp 6
Lớp 7
Lớp 8
Lớp 9
Lớp 10
Lớp 11
Lớp 12
Đăng ký
Đăng nhập
Trang chủ
Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Trang chủ
/
Giải bài tập
/ Lớp 12 / Toán học /
Ôn tập chương II
Ôn tập chương II
Hướng dẫn giải Bài 7 (Trang 90 SGK Toán Giải Tích 12)
<p><strong>Bài 7 (Trang 90 SGK Toán Giải Tích 12):</strong></p> <p>Giải các phương trình:</p> <p>a) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>3</mn><mrow><mi>x</mi><mo>+</mo><mn>4</mn></mrow></msup><mo>+</mo><mn>3</mn><mo>.</mo><msup><mn>5</mn><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></msup><mo>=</mo><msup><mn>5</mn><mrow><mi>x</mi><mo>+</mo><mn>4</mn></mrow></msup><mo>+</mo><msup><mn>3</mn><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></msup></math>;</p> <p>b) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>25</mn><mi>x</mi></msup><mo>-</mo><mn>6</mn><mo>.</mo><msup><mn>5</mn><mi>x</mi></msup><mo>+</mo><mn>5</mn><mo>=</mo><mn>0</mn></math>;</p> <p>c) <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><msup><mn>9</mn><mi>x</mi></msup><mo>+</mo><msup><mn>12</mn><mi>x</mi></msup><mo>-</mo><mn>3</mn><mo>.</mo><msup><mn>16</mn><mi>x</mi></msup><mo>=</mo><mn>0</mn></math>;</p> <p>d) <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>7</mn></msub><mo>(</mo><mi>x</mi><mo>-</mo><mn>1</mn><mo>)</mo><mo>.</mo><msub><mi>log</mi><mn>7</mn></msub><mi>x</mi><mo>=</mo><msub><mi>log</mi><mn>7</mn></msub><mi>x</mi></math>;</p> <p>e) <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>3</mn></msub><mi>x</mi><mo>+</mo><msub><mi>log</mi><msqrt><mn>3</mn></msqrt></msub><mi>x</mi><mo>+</mo><msub><mi>log</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msub><mi>x</mi><mo>=</mo><mn>6</mn></math>;</p> <p>g) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>log</mi><mfrac><mrow><mi>x</mi><mo>+</mo><mn>8</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mi>log</mi><mi>x</mi></math></p> <p><strong><em>Hướng dẫn giải:</em></strong></p> <p><strong>a)</strong></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>3</mn><mrow><mi>x</mi><mo>+</mo><mn>4</mn></mrow></msup><mo> </mo><mo>+</mo><mo> </mo><mn>3</mn><mo>.</mo><mo> </mo><msup><mn>5</mn><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></msup><mo> </mo><mo>=</mo><mo> </mo><msup><mn>5</mn><mrow><mi>x</mi><mo>+</mo><mn>4</mn></mrow></msup><mo> </mo><mo>+</mo><mo> </mo><mn>3</mn><mo>.</mo><mo> </mo><msup><mn>3</mn><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></msup><mo> </mo><mo>⇔</mo><mo> </mo><mn>81</mn><mo>.</mo><msup><mn>3</mn><mi>x</mi></msup><mo> </mo><mo>+</mo><mo> </mo><mn>375</mn><mo>.</mo><msup><mn>3</mn><mn>3</mn></msup><mo> </mo><mo>=</mo><mo> </mo><mn>625</mn><mo>.</mo><msup><mn>5</mn><mi>x</mi></msup><mo> </mo><mo>+</mo><mo> </mo><mn>27</mn><mo>.</mo><mn>3</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>⇔</mo><mo> </mo><mn>81</mn><mo>.</mo><msup><mn>3</mn><mi>x</mi></msup><mo> </mo><mo>-</mo><mo> </mo><mn>27</mn><mo>.</mo><msup><mn>3</mn><mi>x</mi></msup><mo> </mo><mo>=</mo><mo> </mo><mn>625</mn><mo>.</mo><msup><mn>5</mn><mi>x</mi></msup><mo> </mo><mo>-</mo><mo> </mo><mn>375</mn><mo>.</mo><msup><mn>5</mn><mi>x</mi></msup><mo> </mo><mo>⇔</mo><mo> </mo><mn>54</mn><mo>.</mo><msup><mn>3</mn><mi>x</mi></msup><mo> </mo><mo>=</mo><mo> </mo><mn>250</mn><mo>.</mo><msup><mn>5</mn><mi>x</mi></msup><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>⇔</mo><mo> </mo><msup><mfenced><mfrac><mn>3</mn><mn>5</mn></mfrac></mfenced><mi>x</mi></msup><mo> </mo><mo>=</mo><mo> </mo><msup><mfenced><mfrac><mn>5</mn><mn>3</mn></mfrac></mfenced><mn>3</mn></msup><mo> </mo><mo>⇔</mo><mo> </mo><mi>x</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mn>3</mn><mo>.</mo></math></p> <p>Vậy S = {-3}</p> <p><strong>b)</strong></p> <p>Đặt t = 5<sup>x</sup> (t > 0 ), ta có phương trình: <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="normal">t</mi><mn>2</mn></msup><mo> </mo><mo>-</mo><mo> </mo><mn>6</mn><mi mathvariant="normal">t</mi><mo> </mo><mo>+</mo><mo> </mo><mn>5</mn><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo> </mo><mo>⇔</mo><mo> </mo><mo>[</mo><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">t</mi><mo> </mo><mo>=</mo><mo> </mo><mn>1</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">t</mi><mo> </mo><mo>=</mo><mo> </mo><mn>5</mn></mtd></mtr></mtable><mo> </mo><mo>⇔</mo><mo> </mo><mo>[</mo><mtable columnalign="left"><mtr><mtd><msup><mn>5</mn><mi mathvariant="normal">x</mi></msup><mo> </mo><mo>=</mo><mo> </mo><mn>1</mn></mtd></mtr><mtr><mtd><msup><mn>5</mn><mi mathvariant="normal">x</mi></msup><mo> </mo><mo>=</mo><mo> </mo><mn>5</mn></mtd></mtr></mtable><mo> </mo><mo>⇔</mo><mo> </mo><mo>[</mo><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">x</mi><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo> </mo><mo>=</mo><mo> </mo><mn>1</mn></mtd></mtr></mtable></math></p> <p>Vậy S = {0;1}</p> <p><strong>c)</strong></p> <p>Chia hai vế phương trình cho 9<sup>x</sup> (9<sup>x</sup> > 0) ta được:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>+</mo><msup><mfenced><mfrac><mn>4</mn><mn>3</mn></mfrac></mfenced><mi>x</mi></msup><mo>-</mo><mn>3</mn><mo>.</mo><msup><mfenced><mfrac><mn>16</mn><mn>9</mn></mfrac></mfenced><mi>x</mi></msup><mo>=</mo><mn>0</mn><mo> </mo><mo>.</mo><mo> </mo><mo> </mo><mo> </mo><mi>Đặt</mi><mo> </mo><mi mathvariant="normal">t</mi><mo>=</mo><msup><mfenced><mfrac><mn>4</mn><mn>3</mn></mfrac></mfenced><mi mathvariant="normal">x</mi></msup><mo> </mo><mo>(</mo><mi mathvariant="normal">t</mi><mo>></mo><mn>0</mn><mo>)</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Ta</mi><mo> </mo><mi>có</mi><mo>:</mo><mo> </mo><mn>4</mn><mo>+</mo><mi mathvariant="normal">t</mi><mo>-</mo><mn>3</mn><msup><mi mathvariant="normal">t</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo> </mo><mo>⇔</mo><mo> </mo><mo>[</mo><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">t</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mn>1</mn><mo> </mo><mo>(</mo><mi>loại</mi><mo>)</mo></mtd></mtr><mtr><mtd><mi mathvariant="normal">t</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>4</mn><mn>3</mn></mfrac></mtd></mtr></mtable></math></p> <p>Với <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">t</mi><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mo> </mo><mo>⇔</mo><msup><mfenced><mfrac><mn>4</mn><mn>3</mn></mfrac></mfenced><mi mathvariant="normal">x</mi></msup><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mo> </mo><mo>⇔</mo><mo> </mo><mi mathvariant="normal">x</mi><mo>=</mo><mn>1</mn></math></p> <p>Vậy S = {1}.</p> <p><strong>d)</strong> Điều kiện: x>1, khi đó log<sub>7</sub>x > 0.</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>7</mn></msub><mfenced><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>.</mo><msub><mi>log</mi><mn>7</mn></msub><mi mathvariant="normal">x</mi><mo> </mo><mo>=</mo><mo> </mo><msub><mi>log</mi><mn>7</mn></msub><mi mathvariant="normal">x</mi><mo> </mo><mo>⇔</mo><mo> </mo><msub><mi>log</mi><mn>7</mn></msub><mfenced><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mn>1</mn><mo> </mo><mo>⇔</mo><mo> </mo><mi mathvariant="normal">x</mi><mo> </mo><mo>=</mo><mo> </mo><mn>8</mn></math></p> <p>Vậy S = {8}</p> <p><strong>e)</strong> Điều kiện: x > 0</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>3</mn></msub><mi>x</mi><mo> </mo><mo> </mo><mo>+</mo><mo> </mo><msub><mi>log</mi><msqrt><mn>3</mn></msqrt></msub><mi>x</mi><mo> </mo><mo>+</mo><mo> </mo><msub><mi>log</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msub><mi>x</mi><mo> </mo><mo>=</mo><mo> </mo><mn>6</mn><mo> </mo><mo>⇔</mo><mo> </mo><msub><mi>log</mi><mn>3</mn></msub><mi>x</mi><mo> </mo><mo>+</mo><mo> </mo><mn>2</mn><msub><mi>log</mi><mn>3</mn></msub><mi>x</mi><mo> </mo><mo>-</mo><mo> </mo><msub><mi>log</mi><mn>3</mn></msub><mi>x</mi><mo> </mo><mo>=</mo><mo> </mo><mn>6</mn><mo> </mo><mo>⇔</mo><mo> </mo><msub><mi>log</mi><mn>3</mn></msub><mi>x</mi><mo> </mo><mo>=</mo><mo> </mo><mn>3</mn><mo> </mo><mo>⇔</mo><mo> </mo><mi>x</mi><mo> </mo><mo>=</mo><mo> </mo><mn>27</mn></math></p> <p>Vậy S = {27}.</p> <p><strong>g)</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>log</mi><mfrac><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>8</mn></mrow><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mi>logx</mi><mo> </mo><mo>⇔</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">x</mi><mo>></mo><mn>0</mn></mtd></mtr><mtr><mtd><mfrac><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>8</mn></mrow><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced><mo>⇔</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">x</mi><mo>></mo><mn>0</mn></mtd></mtr><mtr><mtd><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>8</mn><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mfenced><mo>⇔</mo><mi mathvariant="normal">x</mi><mo>=</mo><mn>4</mn></math></p> <p>Vậy S = {4}.</p>
Hướng dẫn Giải Bài 7 (Trang 90, SGK Toán Giải Tích 12)
GV:
GV colearn
Xem lời giải bài tập khác cùng bài
Hướng dẫn giải Bài 1 (Trang 90 SGK Toán Giải Tích 12)
Xem lời giải
Hướng dẫn giải Bài 2 (Trang 90 SGK Toán Giải Tích 12)
Xem lời giải
Hướng dẫn giải Bài 3 (Trang 90 SGK Toán Giải Tích 12)
Xem lời giải
Hướng dẫn giải Bài 4 (Trang 90 SGK Toán Giải Tích 12)
Xem lời giải
Hướng dẫn giải Bài 5 (Trang 90 SGK Toán Giải Tích 12)
Xem lời giải
Hướng dẫn giải Bài 6 (Trang 90 SGK Toán Giải Tích 12)
Xem lời giải
Hướng dẫn giải Bài 8 (Trang 90 SGK Toán Giải Tích 12)
Xem lời giải
Hướng dẫn giải Bài tập trắc nghiệm 1 (Trang 91 SGK Giải Tích 12)
Xem lời giải
Hướng dẫn giải Bài tập trắc nghiệm 2 (Trang 91 SGK Giải Tích 12)
Xem lời giải
Hướng dẫn giải Bài tập trắc nghiệm 3 (Trang 91 SGK Giải Tích 12)
Xem lời giải
Hướng dẫn giải Bài tập trắc nghiệm 4 (Trang 91 SGK Giải Tích 12)
Xem lời giải
Hướng dẫn giải Bài tập trắc nghiệm 5 (Trang 91 SGK Giải Tích 12)
Xem lời giải
Hướng dẫn giải Bài tập trắc nghiệm 6 (Trang 91 SGK Giải Tích 12)
Xem lời giải
Hướng dẫn giải Bài tập trắc nghiệm 7 (Trang 91 SGK Giải Tích 12)
Xem lời giải
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 7 (Trang 90, SGK Toán Giải Tích 12)
GV:
GV colearn