Bài 3. Một số phương trình lượng giác thường gặp
Hướng dẫn giải Hoạt động 6 (Trang 36 SGK Toán Đại số & Giải tích 11)
<p>Giải phương tr&igrave;nh&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>3</mn></msqrt><mi>sin</mi><mn>3</mn><mi>x</mi><mo>-</mo><mi>cos</mi><mn>3</mn><mi>x</mi><mo>=</mo><msqrt><mn>2</mn></msqrt></math></p> <p class="content_method_header"><strong class="content_method">Phương ph&aacute;p giải</strong></p> <div class="content_method_content"> <p>Chia cả hai vế cho 2 v&agrave; sử dụng c&ocirc;ng thức <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mrow><mi>a</mi><mo>-</mo><mi>b</mi></mrow></mfenced><mo>=</mo><mi>sin</mi><mi>a</mi><mi>cos</mi><mi>b</mi><mo>-</mo><mi>sin</mi><mi>b</mi><mi>cos</mi><mi>a</mi></math>&nbsp;biến đổi phương tr&igrave;nh.</p> </div> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>3</mn></msqrt><mi>sin</mi><mn>3</mn><mi>x</mi><mo>-</mo><mi>cos</mi><mn>3</mn><mi>x</mi><mo>=</mo><msqrt><mn>2</mn></msqrt><mspace linebreak="newline"/><mo>&#8660;</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac><mi>sin</mi><mn>3</mn><mi>x</mi><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>cos</mi><mn>3</mn><mi>x</mi><mo>=</mo><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mspace linebreak="newline"/><mo>&#8660;</mo><mi>cos</mi><mfrac><mi mathvariant="normal">&#960;</mi><mn>6</mn></mfrac><mi>sin</mi><mn>3</mn><mi>x</mi><mo>-</mo><mi>sin</mi><mfrac><mi mathvariant="normal">&#960;</mi><mn>6</mn></mfrac><mi>cos</mi><mn>3</mn><mi>x</mi><mo>=</mo><mi>sin</mi><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac><mspace linebreak="newline"/><mo>&#8660;</mo><mi>sin</mi><mfenced><mrow><mn>3</mn><mi>x</mi><mo>-</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>6</mn></mfrac></mrow></mfenced><mo>=</mo><mi>sin</mi><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac><mspace linebreak="newline"/><mo>&#8660;</mo><mo>[</mo><mtable columnspacing="2px" columnalign="right center left"><mtr><mtd><mn>3</mn><mi>x</mi><mo>-</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>6</mn></mfrac></mtd><mtd><mo>=</mo></mtd><mtd><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac><mo>+</mo><mi>k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi></mtd></mtr><mtr><mtd><mn>3</mn><mi>x</mi><mo>-</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>6</mn></mfrac></mtd><mtd><mo>=</mo></mtd><mtd><mi mathvariant="normal">&#960;</mi><mo>-</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac><mo>+</mo><mi mathvariant="normal">k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi></mtd></mtr></mtable><mo>;</mo><mo>&#160;</mo><mi>k</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi><mspace linebreak="newline"/><mo>&#8660;</mo><mo>[</mo><mtable columnspacing="2px" columnalign="right center left"><mtr><mtd><mn>3</mn><mi>x</mi></mtd><mtd><mo>=</mo></mtd><mtd><mfrac><mrow><mn>5</mn><mi mathvariant="normal">&#960;</mi></mrow><mn>12</mn></mfrac><mo>+</mo><mi mathvariant="normal">k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi></mtd></mtr><mtr><mtd><mn>3</mn><mi>x</mi></mtd><mtd><mo>=</mo></mtd><mtd><mfrac><mrow><mn>11</mn><mi mathvariant="normal">&#960;</mi></mrow><mn>12</mn></mfrac><mo>+</mo><mi mathvariant="normal">k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi></mtd></mtr></mtable><mo>;</mo><mo>&#160;</mo><mi>k</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi><mspace linebreak="newline"/><mo>&#8660;</mo><mo>[</mo><mtable columnspacing="2px" columnalign="right center left"><mtr><mtd><mi>x</mi></mtd><mtd><mo>=</mo></mtd><mtd><mfrac><mrow><mn>5</mn><mi mathvariant="normal">&#960;</mi></mrow><mn>36</mn></mfrac><mo>+</mo><mi>k</mi><mfrac><mrow><mn>2</mn><mi mathvariant="normal">&#960;</mi></mrow><mn>3</mn></mfrac></mtd></mtr><mtr><mtd><mi>x</mi></mtd><mtd><mo>=</mo></mtd><mtd><mfrac><mrow><mn>11</mn><mi mathvariant="normal">&#960;</mi></mrow><mn>36</mn></mfrac><mo>+</mo><mi>k</mi><mfrac><mrow><mn>2</mn><mi mathvariant="normal">&#960;</mi></mrow><mn>3</mn></mfrac></mtd></mtr></mtable><mo>&#160;</mo><mo>;</mo><mo>&#160;</mo><mi>k</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi><mtable columnspacing="2px" columnalign="left"><mtr/><mtr/></mtable></math></p> <p><br /><br /><br /><br /></p>
Xem lời giải bài tập khác cùng bài