Bài 3. Một số phương trình lượng giác thường gặp
Hướng dẫn giải Hoạt động 4 (Trang 34 SGK Toán Đại số & Giải tích 11)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Giải phương tr&igrave;nh 3cos<sup>2</sup>&nbsp;6x + 8sin3x cos3x &ndash; 4 = 0</p> <p class="content_method_header"><strong class="content_method">Phương ph&aacute;p giải&nbsp;</strong></p> <div class="content_method_content"> <p>- Biến đổi phương tr&igrave;nh về bậc hai với ẩn <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mi>sin</mi><mn>6</mn><mi>x</mi></math>.</p> <p>- Giải phương tr&igrave;nh ẩn <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>&nbsp;v&agrave; suy ra nghiệm.</p> </div> <p><strong class="content_detail">Lời giải chi tiết</strong><span id="MathJax-Element-3-Frame" class="mjx-full-width mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: table-cell !important; line-height: 0; text-indent: 0px; text-align: center; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 14.918em; min-height: 0px; border: 0px; width: 10000em; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;msup&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mo&gt;&amp;#x2061;&lt;/mo&gt;&lt;/mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mo&gt;&amp;#x2061;&lt;/mo&gt;&lt;/mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace linebreak=&quot;newline&quot; /&gt;&lt;mo stretchy=&quot;false&quot;&gt;&amp;#x21D4;&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;msup&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mo&gt;&amp;#x2061;&lt;/mo&gt;&lt;/mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace linebreak=&quot;newline&quot; /&gt;&lt;mo stretchy=&quot;false&quot;&gt;&amp;#x21D4;&lt;/mo&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;msup&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mo&gt;&amp;#x2061;&lt;/mo&gt;&lt;/mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;"></span></p> <p>3cos<sup>2</sup>&nbsp;6x + 8sin3x cos3x &ndash; 4 = 0</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&hArr;</mo><mn>3</mn><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>sin</mi><mn>2</mn></msup><mn>6</mn><mi>x</mi></mrow></mfenced><mo>+</mo><mn>4</mn><mi>sin</mi><mn>6</mn><mi>x</mi><mo>-</mo><mn>4</mn><mo>=</mo><mn>0</mn><mspace linebreak="newline"></mspace><mo>&hArr;</mo><mo>-</mo><mn>3</mn><msup><mi>sin</mi><mn>2</mn></msup><mn>6</mn><mi>x</mi><mo>+</mo><mn>4</mn><mi>sin</mi><mn>6</mn><mi>x</mi><mo>-</mo><mn>1</mn><mo>=</mo><mn>0</mn></math></p> <p>Đặt <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mn>6</mn><mi>x</mi><mo>=</mo><mi>t</mi></math>&nbsp;với điều kiện <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>&le;</mo><mi>t</mi><mo>&le;</mo><mn>1</mn><mfenced><mo>*</mo></mfenced></math>, ta được phương tr&igrave;nh bậc hai theo t:</p> <p>-3t<sup>2</sup>&nbsp;+ 4t - 1 = 0(1)</p> <p>&Delta; = 4<sup>2</sup>&nbsp;- 4.(-1).(-3) = 4</p> <p>Phương tr&igrave;nh (1) c&oacute; hai nghiệm l&agrave;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mfrac><mrow><mo>-</mo><mn>4</mn><mo>+</mo><msqrt><mn>4</mn></msqrt></mrow><mrow><mn>2</mn><mo>.</mo><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mfenced><mrow><mi>T</mi><mi>M</mi></mrow></mfenced><mspace linebreak="newline"></mspace><msub><mi>t</mi><mn>2</mn></msub><mo>=</mo><mfrac><mrow><mo>-</mo><mn>4</mn><mo>-</mo><msqrt><mn>4</mn></msqrt></mrow><mrow><mn>2</mn><mo>.</mo><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mn>1</mn><mfenced><mrow><mi>T</mi><mi>M</mi></mrow></mfenced></math></p> <p>Ta c&oacute;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mn>6</mn><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>&hArr;</mo><mn>6</mn><mi>x</mi><mo>=</mo><mi>a</mi><mi>r</mi><mi>c</mi><mi>sin</mi><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>+</mo><mi>k</mi><mn>2</mn><mi mathvariant="normal">&pi;</mi></math> v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mi>x</mi><mo>=</mo><mi mathvariant="normal">&pi;</mi><mo>-</mo><mi>arcsin</mi><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>+</mo><mi mathvariant="normal">k</mi><mn>2</mn><mi mathvariant="normal">&pi;</mi></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&hArr;</mo><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mi>a</mi><mi>r</mi><mi>c</mi><mi>sin</mi><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>+</mo><mfrac><mrow><mi>k</mi><mi mathvariant="normal">&pi;</mi></mrow><mn>3</mn></mfrac></math>&nbsp;v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mi mathvariant="normal">&pi;</mi><mn>6</mn></mfrac><mo>-</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mi>a</mi><mi>r</mi><mi>c</mi><mi>sin</mi><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>+</mo><mfrac><mrow><mi>k</mi><mi mathvariant="normal">&pi;</mi></mrow><mn>3</mn></mfrac><mo>,</mo><mo>&nbsp;</mo><mi>k</mi><mo>&isin;</mo><mi mathvariant="normal">ℤ</mi></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mn>6</mn><mi>x</mi><mo>=</mo><mn>1</mn><mo>&hArr;</mo><mi>sin</mi><mn>6</mn><mi>x</mi><mo>=</mo><mi>sin</mi><mfrac><mi mathvariant="normal">&pi;</mi><mn>2</mn></mfrac><mspace linebreak="newline"></mspace><mo>&hArr;</mo><mn>6</mn><mi>x</mi><mo>=</mo><mfrac><mi mathvariant="normal">&pi;</mi><mn>2</mn></mfrac><mo>+</mo><mi>k</mi><mn>2</mn><mi mathvariant="normal">&pi;</mi><mo>,</mo><mo>&nbsp;</mo><mi mathvariant="normal">k</mi><mo>&isin;</mo><mi mathvariant="normal">ℤ</mi><mspace linebreak="newline"></mspace><mo>&hArr;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mfrac><mi mathvariant="normal">&pi;</mi><mn>12</mn></mfrac><mo>+</mo><mfrac><mi>k&pi;</mi><mn>3</mn></mfrac><mo>,</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mi mathvariant="normal">k</mi><mo>&isin;</mo><mi mathvariant="normal">ℤ</mi></math></p> <p><br /><br /><br /></p>
Xem lời giải bài tập khác cùng bài