Bài 3. Một số phương trình lượng giác thường gặp
Hướng dẫn giải Bài 5 (Trang 37 SGK Toán Đại số & Giải tích 11)
<p>Giải c&aacute;c phương tr&igrave;nh</p> <p>a) cosx -&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>3</mn></msqrt><mi>sin</mi><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>2</mn></msqrt></math>;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;b)3sin3x - 4cos3x = 5;</p> <p>c) 2sinx + 2cosx -&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>2</mn></msqrt></math> = 0;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; d) 5cos2x +12sin2x -13=0</p> <p>Giải:</p> <p>a) Chia hai vế phương t&igrave;nh cho&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mn>1</mn><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>(</mo><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow><mn>2</mn></msup></msqrt><mo>=</mo><mn>2</mn><mo>&#160;</mo></math>ta được:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>cos</mi><mi>x</mi><mo>&#160;</mo><mo>-</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac><mi>sin</mi><mi>x</mi><mo>=</mo><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mo>&#8660;</mo><mi>cos</mi><mi>x</mi><mi>cos</mi><mfrac><mi mathvariant="normal">&#960;</mi><mn>3</mn></mfrac><mo>-</mo><mi>sin</mi><mfrac><mi mathvariant="normal">&#960;</mi><mn>3</mn></mfrac><mi>sin</mi><mi>x</mi><mo>=</mo><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo><mi>cos</mi><mo>(</mo><mi>x</mi><mo>+</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>3</mn></mfrac><mo>)</mo><mo>=</mo><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mo>=</mo><mi>cos</mi><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac><mo>&#8660;</mo><msubsup><mo>[</mo><mrow><mi>x</mi><mo>+</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>3</mn></mfrac><mo>-</mo><mo>-</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac><mo>+</mo><mi>k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi></mrow><mrow><mi>x</mi><mo>+</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>3</mn></mfrac><mo>=</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac><mo>+</mo><mi>k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi></mrow></msubsup><mo>&#160;</mo><mo>&#160;</mo><mo>(</mo><mi>k</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi><mo>)</mo></math></p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo><msubsup><mo>[</mo><mrow><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mrow><mn>7</mn><mi mathvariant="normal">&#960;</mi></mrow><mn>12</mn></mfrac><mo>+</mo><mi>k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi></mrow><mrow><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>12</mn></mfrac><mo>+</mo><mi>k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi></mrow></msubsup><mo>&#160;</mo><mo>(</mo><mi>k</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi><mo>)</mo></math></p> <p>b) Chia hai vế phương tr&igrave;nh cho&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mn>3</mn><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>(</mo><mo>-</mo><mn>4</mn><mo>)</mo></mrow><mn>2</mn></msup></msqrt><mo>=</mo><mn>5</mn></math> ta được</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>5</mn></mfrac><mi>sin</mi><mn>3</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mfrac><mn>4</mn><mn>5</mn></mfrac><mi>cos</mi><mn>3</mn><mi>x</mi><mo>=</mo><mn>1</mn><mo>&#160;</mo><mo>&#8660;</mo><mi>sin</mi><mn>3</mn><mi>x</mi><mi>cos</mi><mi>&#945;</mi><mo>-</mo><mi>sin</mi><mi>&#945;</mi><mi>cos</mi><mn>3</mn><mi>x</mi><mo>=</mo><mn>1</mn></math></p> <p>(trong đ&oacute; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mi>&#945;</mi><mo>=</mo><mfrac><mn>3</mn><mn>5</mn></mfrac><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mi>sin</mi><mi>&#945;</mi><mo>=</mo><mfrac><mn>4</mn><mn>5</mn></mfrac></math>)</p> <p>Ta c&oacute;: sin(3x-<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#945;</mi><mo>)</mo><mo>=</mo><mi>sin</mi><mfrac><mi mathvariant="normal">&#960;</mi><mn>2</mn></mfrac><mo>&#8660;</mo><mn>3</mn><mi>x</mi><mo>-</mo><mi>&#945;</mi><mo>=</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>2</mn></mfrac><mo>+</mo><mi>k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi><mo>&#8660;</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>6</mn></mfrac><mo>+</mo><mfrac><mi mathvariant="normal">&#945;</mi><mn>3</mn></mfrac><mo>+</mo><mi mathvariant="normal">k</mi><mfrac><mrow><mn>2</mn><mi mathvariant="normal">&#960;</mi></mrow><mn>3</mn></mfrac><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">k</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi></math></p> <p>c) Ta c&oacute; 2sinx +2cosx -<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>2</mn></msqrt><mo>=</mo><mn>0</mn><mo>&#8660;</mo><mn>2</mn><mo>(</mo><mi>sin</mi><mi>x</mi><mo>+</mo><mi>cos</mi><mi>x</mi><mo>)</mo><mo>=</mo><msqrt><mn>2</mn></msqrt></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo><mn>2</mn><msqrt><mn>2</mn></msqrt><mi>sin</mi><mfenced><mrow><mi>x</mi><mo>+</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac></mrow></mfenced><mo>=</mo><msqrt><mn>2</mn></msqrt><mo>&#8660;</mo><mi>sin</mi><mfenced><mrow><mi>x</mi><mo>+</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>=</mo><mi>sin</mi><mfrac><mi mathvariant="normal">&#960;</mi><mn>6</mn></mfrac></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo><msubsup><mo>[</mo><mrow><mi>x</mi><mo>+</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac><mo>=</mo><mfrac><mrow><mn>5</mn><mi mathvariant="normal">&#960;</mi></mrow><mn>6</mn></mfrac><mo>+</mo><mi>k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi></mrow><mrow><mi>x</mi><mo>+</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac><mo>=</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>6</mn></mfrac><mo>+</mo><mi>k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi></mrow></msubsup><mo>&#160;</mo><mo>&#8660;</mo><msubsup><mo>[</mo><mrow><mi>x</mi><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>7</mn><mi mathvariant="normal">&#960;</mi></mrow><mn>12</mn></mfrac><mo>+</mo><mi>k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi></mrow><mrow><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>12</mn></mfrac><mo>+</mo><mi>k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi></mrow></msubsup><mo>&#160;</mo><mo>&#160;</mo><mo>(</mo><mi>k</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi><mo>)</mo></math></p> <p>d) Chia hai vế phương tr&igrave;nh cho&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mn>5</mn><mn>2</mn></msup><mo>+</mo><msup><mn>12</mn><mn>2</mn></msup></msqrt><mo>=</mo><mn>13</mn></math> ta được</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>5</mn><mn>13</mn></mfrac><mi>cos</mi><mn>2</mn><mi>x</mi><mo>+</mo><mfrac><mn>12</mn><mn>13</mn></mfrac><mi>sin</mi><mn>2</mn><mi>x</mi><mo>=</mo><mn>1</mn><mo>&#160;</mo><mo>&#8660;</mo><mi>cos</mi><mn>2</mn><mi>x</mi><mi>cos</mi><mi>&#945;</mi><mo>+</mo><mi>sin</mi><mn>2</mn><mi>x</mi><mi>sin</mi><mi>&#945;</mi><mo>=</mo><mn>1</mn></math></p> <p>(trong đ&oacute;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mi>&#945;</mi><mo>&#160;</mo><mo>=</mo><mfrac><mn>5</mn><mn>13</mn></mfrac><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mi>sin</mi><mi>&#945;</mi><mo>=</mo><mfrac><mn>12</mn><mn>13</mn></mfrac><mo>)</mo></math></p> <p>Ta c&oacute;: cos (2x-<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#945;</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>&#160;</mo><mo>&#8660;</mo><mn>2</mn><mi>x</mi><mo>-</mo><mi>&#945;</mi><mo>=</mo><mi>k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi><mo>&#8660;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mfrac><mi mathvariant="normal">&#945;</mi><mn>2</mn></mfrac><mo>-</mo><mi>k&#960;</mi><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">k</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi></math></p>
Hướng dẫn Giải Bài 5 (trang 37, SGK Toán Đại số & Giải Tích 11)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 5 (trang 37, SGK Toán Đại số & Giải Tích 11)
GV: GV colearn