Bài 3. Một số phương trình lượng giác thường gặp
Hướng dẫn giải Hoạt động 3 (Trang 32 SGK Toán Đại số & Giải tích 11)
<div> <p>H&atilde;y nhắc lại:</p> </div> <div id="sub-question-1" class="box-question top20"> <p>&nbsp;a) C&aacute;c hằng đẳng thức lượng gi&aacute;c cơ bản;</p> </div> <p>&nbsp;b) C&ocirc;ng thức cộng;</p> <p>&nbsp;c) C&ocirc;ng thức nh&acirc;n đ&ocirc;i;</p> <p>&nbsp;d) C&ocirc;ng thức biến đổi t&iacute;ch th&agrave;nh tổng v&agrave; tổng th&agrave;nh t&iacute;ch.</p> <div id="sub-question-1" class="box-question top20"> <p><strong>Lời giải chi tiết:</strong></p> <p>&nbsp;a) C&aacute;c hằng đẳng thức lượng gi&aacute;c cơ bản:<math xmlns="http://www.w3.org/1998/Math/MathML"><mi></mi></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mn>2</mn></msup><mi>&alpha;</mi><mo>+</mo><msup><mi>cos</mi><mn>2</mn></msup><mi>&alpha;</mi><mo>=</mo><mn>1</mn><mspace linebreak="newline"></mspace><mn>1</mn><mo>+</mo><msup><mi>tan</mi><mn>2</mn></msup><mi>&alpha;</mi><mo>=</mo><mfrac><mn>1</mn><mrow><msup><mi>cos</mi><mn>2</mn></msup><mi>&alpha;</mi></mrow></mfrac><mo>;</mo><mo>&nbsp;</mo><mi>&alpha;</mi><mo>&ne;</mo><mfrac><mi mathvariant="normal">&pi;</mi><mn>2</mn></mfrac><mo>+</mo><mi>k</mi><mi mathvariant="normal">&pi;</mi><mo>,</mo><mo>&nbsp;</mo><mi mathvariant="normal">k</mi><mo>&isin;</mo><mi mathvariant="normal">ℤ</mi><mspace linebreak="newline"></mspace><mn>1</mn><mo>+</mo><msup><mi>cot</mi><mn>2</mn></msup><mi mathvariant="normal">&alpha;</mi><mo>=</mo><mfrac><mn>1</mn><mrow><msup><mi>sin</mi><mn>2</mn></msup><mi mathvariant="normal">&alpha;</mi></mrow></mfrac><mo>;</mo><mo>&nbsp;</mo><mi mathvariant="normal">&alpha;</mi><mo>&ne;</mo><mi>k&pi;</mi><mo>,</mo><mo>&nbsp;</mo><mi mathvariant="normal">k</mi><mo>&isin;</mo><mi mathvariant="normal">ℤ</mi><mspace linebreak="newline"></mspace><mi>tan&alpha;</mi><mo>.</mo><mi>co</mi><mn>2</mn><mi mathvariant="normal">&alpha;</mi><mo>=</mo><mn>1</mn><mo>;</mo><mo>&nbsp;</mo><mi mathvariant="normal">&alpha;</mi><mo>&ne;</mo><mfrac><mi>k&pi;</mi><mn>2</mn></mfrac><mo>,</mo><mo>&nbsp;</mo><mi mathvariant="normal">k</mi><mo>&isin;</mo><mi mathvariant="normal">ℤ</mi></math></p> </div> <div id="sub-question-2" class="box-question top20"> <p>&nbsp;b) C&ocirc;ng thức cộng;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mrow><mi>a</mi><mo>-</mo><mi>b</mi></mrow></mfenced><mo>=</mo><mi>cos</mi><mi>a</mi><mi>cos</mi><mi>b</mi><mo>+</mo><mi>sin</mi><mi>a</mi><mi>sin</mi><mi>b</mi><mspace linebreak="newline"/><mi>cos</mi><mfenced><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></mfenced><mo>=</mo><mi>cos</mi><mi>a</mi><mi>cos</mi><mi>b</mi><mo>-</mo><mi>sin</mi><mi>a</mi><mi>sin</mi><mi>b</mi><mspace linebreak="newline"/><mi>sin</mi><mfenced><mrow><mi>a</mi><mo>-</mo><mi>b</mi></mrow></mfenced><mo>=</mo><mi>sin</mi><mi>a</mi><mi>cos</mi><mi>b</mi><mo>-</mo><mi>cos</mi><mi>a</mi><mi>sin</mi><mi>b</mi><mspace linebreak="newline"/><mi>tan</mi><mfenced><mrow><mi>a</mi><mo>-</mo><mi>b</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><mi>tan</mi><mi>a</mi><mo>-</mo><mi>tan</mi><mi>b</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>tan</mi><mi>a</mi><mo>.</mo><mi>tan</mi><mi>b</mi></mrow></mfrac><mspace linebreak="newline"/><mi>tan</mi><mfenced><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><mi>tan</mi><mi>a</mi><mo>+</mo><mi>tan</mi><mi>b</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>tan</mi><mi>a</mi><mo>.</mo><mi>tan</mi><mi>b</mi></mrow></mfrac></math></p> </div> <div id="sub-question-3" class="box-question top20"> <p>&nbsp;c) C&ocirc;ng thức nh&acirc;n đ&ocirc;i</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mi>&#945;</mi><mo>=</mo><mn>2</mn><mi>sin</mi><mi>&#945;</mi><mi>cos</mi><mi>&#945;</mi><mspace linebreak="newline"/><mi>cos</mi><mn>2</mn><mi>&#945;</mi><mo>=</mo><msup><mi>cos</mi><mn>2</mn></msup><mi>&#945;</mi><mo>-</mo><msup><mi>sin</mi><mn>2</mn></msup><mi>&#945;</mi><mo>=</mo><mn>2</mn><msup><mi>cos</mi><mn>2</mn></msup><mi>&#945;</mi><mo>-</mo><mn>1</mn><mo>=</mo><mn>1</mn><mo>-</mo><mn>2</mn><msup><mi>sin</mi><mn>2</mn></msup><mi>&#945;</mi><mspace linebreak="newline"/><mi>tan</mi><mn>2</mn><mi>&#945;</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>tan</mi><mi>&#945;</mi></mrow><mrow><mn>1</mn><mo>-</mo><msup><mi>tan</mi><mn>2</mn></msup><mi>&#945;</mi></mrow></mfrac></math></p> </div> <div id="sub-question-4" class="box-question top20"> <p>&nbsp;d) C&ocirc;ng thức biến đổi t&iacute;ch th&agrave;nh tổng v&agrave; tổng th&agrave;nh t&iacute;ch.</p> <p>&nbsp; &nbsp;C&ocirc;ng thức biến đổi t&iacute;ch th&agrave;nh tổng:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mi>a</mi><mi>cos</mi><mi>b</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="[" close="]"><mrow><mi>cos</mi><mfenced><mrow><mi>a</mi><mo>-</mo><mi>b</mi></mrow></mfenced><mo>+</mo><mi>cos</mi><mfenced><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></mfenced></mrow></mfenced><mspace linebreak="newline"/><mi>sin</mi><mi>a</mi><mi>sin</mi><mi>b</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="[" close="]"><mrow><mi>cos</mi><mfenced><mrow><mi>a</mi><mo>-</mo><mi>b</mi></mrow></mfenced><mo>-</mo><mi>cos</mi><mfenced><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></mfenced></mrow></mfenced><mspace linebreak="newline"/><mi>sin</mi><mi>a</mi><mi>cos</mi><mi>b</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="[" close="]"><mrow><mi>sin</mi><mfenced><mrow><mi>a</mi><mo>-</mo><mi>b</mi></mrow></mfenced><mo>+</mo><mi>sin</mi><mfenced><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></mfenced></mrow></mfenced></math></p> <p>&nbsp; C&ocirc;ng thức biến đổi tổng th&agrave;nh t&iacute;ch:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mi>u</mi><mo>+</mo><mi>cos</mi><mi>v</mi><mo>=</mo><mn>2</mn><mi>cos</mi><mfrac><mrow><mi>u</mi><mo>+</mo><mi>v</mi></mrow><mn>2</mn></mfrac><mi>cos</mi><mfrac><mrow><mi>u</mi><mo>-</mo><mi>v</mi></mrow><mn>2</mn></mfrac><mspace linebreak="newline"/><mi>cos</mi><mi>u</mi><mo>-</mo><mi>cos</mi><mi>v</mi><mo>=</mo><mo>-</mo><mn>2</mn><mi>sin</mi><mfrac><mrow><mi>u</mi><mo>+</mo><mi>v</mi></mrow><mn>2</mn></mfrac><mi>sin</mi><mfrac><mrow><mi>u</mi><mo>-</mo><mi>v</mi></mrow><mn>2</mn></mfrac><mspace linebreak="newline"/><mi>sin</mi><mi>u</mi><mo>+</mo><mi>sin</mi><mi>v</mi><mo>=</mo><mn>2</mn><mi>sin</mi><mfrac><mrow><mi>u</mi><mo>+</mo><mi>v</mi></mrow><mn>2</mn></mfrac><mi>cos</mi><mfrac><mrow><mi>u</mi><mo>-</mo><mi>v</mi></mrow><mn>2</mn></mfrac><mspace linebreak="newline"/><mi>sin</mi><mi>u</mi><mo>-</mo><mi>sin</mi><mi>v</mi><mo>=</mo><mn>2</mn><mi>cos</mi><mfrac><mrow><mi>u</mi><mo>+</mo><mi>v</mi></mrow><mn>2</mn></mfrac><mi>sin</mi><mfrac><mrow><mi>u</mi><mo>-</mo><mi>v</mi></mrow><mn>2</mn></mfrac><mspace linebreak="newline"/><mspace linebreak="newline"/></math></p> </div> <p><br /><br /><br /></p>
Xem lời giải bài tập khác cùng bài