Bài 3. Một số phương trình lượng giác thường gặp
Hướng dẫn giải Hoạt động 1 (Trang 29 SGK Toán Đại số & Giải tích 11)
<div> <p>Giải c&aacute;c phương tr&igrave;nh trong v&iacute; dụ 1.</p> <p>Lời giải a</p> <p>a) <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>sin</mi><mi>x</mi><mo>-</mo><mn>3</mn><mo>=</mo><mn>0</mn></math>&nbsp;l&agrave; phương tr&igrave;nh bậc nhất đối với sinx.</p> <p><strong>Phương ph&aacute;p giải:</strong></p> <p>Chuyển vế đưa về PT lượng gi&aacute;c cơ bản&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mi>x</mi><mo>=</mo><mi>a</mi></math></p> <p><strong>Lời giải chi tiết:</strong></p> </div> <div id="sub-question-1" class="box-question top20"> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>sin</mi><mi>x</mi><mo>-</mo><mn>3</mn><mo>=</mo><mn>0</mn></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&hArr;</mo><mi>sin</mi><mi>x</mi><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math>, v&ocirc; nghiệm v&igrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mi>x</mi><mo>&le;</mo><mn>1</mn><mo>&le;</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math>&nbsp;với mọi x.</p> <p>Lời giải b</p> </div> <div id="sub-question-2" class="box-question top20"> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>3</mn></msqrt><mi>tan</mi><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>&nbsp;l&agrave; phương tr&igrave;nh bậc nhất đối với <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mi>x</mi></math>.</p> <p><strong>Phương ph&aacute;p giải:</strong></p> <p>B1: đưa PT về dạng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mi>x</mi><mo>=</mo><mi>a</mi></math></p> <p>B2: t&igrave;m <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&alpha;</mi></math>&nbsp;sao cho <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mi>&alpha;</mi><mo>=</mo><mi>a</mi><mo>&rArr;</mo></math>&nbsp;PT trở về dạng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mi>x</mi><mo>=</mo><mi>tan</mi><mi>&alpha;</mi></math></p> <p>B3: Kết luận nghiệm</p> <p><strong>Lời giải chi tiết:</strong><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>3</mn></msqrt><mi>tan</mi><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math><br /><span id="MathJax-Element-11-Frame" class="mjx-full-width mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: table-cell !important; line-height: 0; text-indent: 0px; text-align: center; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 7.622em; min-height: 0px; border: 0px; width: 10000em; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msqrt&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msqrt&gt;&lt;mi&gt;tan&lt;/mi&gt;&lt;mo&gt;&amp;#x2061;&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace linebreak=&quot;newline&quot; /&gt;&lt;mo stretchy=&quot;false&quot;&gt;&amp;#x21D4;&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mo&gt;&amp;#x2061;&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mfrac&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;msqrt&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msqrt&gt;&lt;/mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;mspace linebreak=&quot;newline&quot; /&gt;&lt;mo stretchy=&quot;false&quot;&gt;&amp;#x21D4;&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mo&gt;&amp;#x2061;&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;tan&lt;/mi&gt;&lt;mo&gt;&amp;#x2061;&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mfrac&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mi&gt;&amp;#x03C0;&lt;/mi&gt;&lt;/mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/math&gt;"></span></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&hArr;</mo><mi>tan</mi><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>3</mn></mfrac><mspace linebreak="newline"></mspace><mo>&hArr;</mo><mi>tan</mi><mi>x</mi><mo>=</mo><mi>tan</mi><mfrac><mrow><mo>-</mo><mi mathvariant="normal">&pi;</mi></mrow><mn>6</mn></mfrac><mspace linebreak="newline"></mspace><mo>&hArr;</mo><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mi mathvariant="normal">&pi;</mi></mrow><mn>6</mn></mfrac><mo>+</mo><mi>k</mi><mi mathvariant="normal">&pi;</mi><mo>,</mo><mo>&nbsp;</mo><mi mathvariant="normal">k</mi><mo>&isin;</mo><mi mathvariant="normal">ℤ</mi></math></p> <p>&nbsp;</p> <p>&nbsp;</p> </div> <p><br /><br /><br /></p>
Xem lời giải bài tập khác cùng bài