Bài 3. Một số phương trình lượng giác thường gặp
Hướng dẫn giải Bài 4 (Trang 37 SGK Toán Đại số & Giải tích 11)
<p>Giải c&aacute;c phương tr&igrave;nh:</p> <p>a) 2<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>sin</mi><mi>x</mi><mi>cos</mi><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn></math>;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; b)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><msup><mi>sin</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>4</mn><mi>sin</mi><mi>x</mi><mi>cos</mi><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>5</mn><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn></math>;</p> <p>c)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>sin</mi><mn>2</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>2</mn><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; d) <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn><msqrt><mn>3</mn></msqrt><mi>sin</mi><mn>2</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>4</mn><msup><mi>sin</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>4</mn></math>;</p> <p>Giải:</p> <p>a) Ta c&oacute; với cosx = 0 th&igrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>=</mo><mn>1</mn><mo>&#160;</mo></math>n&ecirc;n gi&aacute; trị x m&agrave; cosx = 0 kh&ocirc;ng thỏa m&atilde;n phương tr&igrave;nh. Chia hai</p> <p>vế phương tr&igrave;nh cho&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>&#8800;</mo><mn>0</mn></math> được</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>tan</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>tan</mi><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mn>0</mn><mo>&#160;</mo><mo>&#8660;</mo><msubsup><mo>[</mo><mrow><mi>tan</mi><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow><mrow><mi>tan</mi><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>1</mn></mrow></msubsup><mo>&#8660;</mo><msubsup><mo>[</mo><mrow><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>a</mi><mi>r</mi><mi>c</mi><mi>tan</mi><mfenced><mrow><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></mfenced><mo>-</mo><mi>k</mi><mi mathvariant="normal">&#960;</mi></mrow><mrow><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac><mo>+</mo><mi>k</mi><mi mathvariant="normal">&#960;</mi></mrow></msubsup><mo>&#160;</mo><mo>&#160;</mo><mo>(</mo><mi>k</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi><mo>)</mo></math></p> <p>b) Ta c&oacute; với cosx = 0 th&igrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>=</mo><mn>1</mn><mo>&#160;</mo></math>n&ecirc;n gi&aacute; trị x m&agrave; cosx = 0 kh&ocirc;ng thỏa m&atilde; phương tr&igrave;nh. Chia hai vế phương tr&igrave;nh cho&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>&#8800;</mo><mn>0</mn><mo>&#160;</mo><mi>t</mi><mi>a</mi><mo>&#160;</mo><mi>&#273;</mi><mi>&#432;</mi><mi>&#7907;</mi><mi>c</mi><mo>&#160;</mo><mn>3</mn><msup><mi>tan</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>4</mn><mi>tan</mi><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>5</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><mo>(</mo><mn>1</mn><mo>+</mo><msup><mi>tan</mi><mn>2</mn></msup><mi>x</mi><mo>)</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo><msup><mi>tan</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>-</mo><mn>4</mn><mi>tan</mi><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mn>0</mn><mo>&#160;</mo><mo>&#8660;</mo><msubsup><mo>[</mo><mrow><mi>tan</mi><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>3</mn></mrow><mrow><mi>tan</mi><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>1</mn></mrow></msubsup><mo>&#8660;</mo><msubsup><mo>[</mo><mrow><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>a</mi><mi>r</mi><mi>c</mi><mi>tan</mi><mn>3</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>k</mi><mi mathvariant="normal">&#960;</mi></mrow><mrow><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac><mo>+</mo><mi>k</mi><mi mathvariant="normal">&#960;</mi></mrow></msubsup><mo>&#160;</mo><mo>&#160;</mo><mo>(</mo><mi>k</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi><mo>)</mo></math></p> <p>c) Ta c&oacute; với&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>sin</mi><mn>2</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>2</mn><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8660;</mo><msup><mi>sin</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>+</mo><mn>2</mn><mi>sin</mi><mi>x</mi><mi>cos</mi><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>2</mn><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p> <p>Gi&aacute; trị x m&agrave; cos = 0 kh&ocirc;ng thỏa m&atilde;n phương tr&igrave;nh. Chia hai vế phương tr&igrave;nh cho&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>&#8800;</mo><mn>0</mn><mo>&#160;</mo><mi>t</mi><mi>a</mi><mo>&#160;</mo><mi>&#273;</mi><mi>&#432;</mi><mi>&#7907;</mi><mi>c</mi><mo>;</mo></math></p> <p>2<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>tan</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>4</mn><mi>tan</mi><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>4</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>1</mn><mo>+</mo><msup><mi>tan</mi><mn>2</mn></msup><mi>x</mi></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo><msup><mi>tan</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>4</mn><mi>tan</mi><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>5</mn><mo>&#160;</mo><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#8660;</mo><msubsup><mo>[</mo><mrow><mi>tan</mi><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>5</mn></mrow><mrow><mi>tan</mi><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>1</mn></mrow></msubsup><mo>&#160;</mo><mo>&#8660;</mo><msubsup><mo>[</mo><mrow><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>a</mi><mi>r</mi><mi>c</mi><mi>tan</mi><mo>(</mo><mo>-</mo><mn>5</mn><mo>)</mo><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>k</mi><mi mathvariant="normal">&#960;</mi></mrow><mrow><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac><mo>+</mo><mi>k</mi><mi mathvariant="normal">&#960;</mi></mrow></msubsup><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>(</mo><mi>k</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi><mo>)</mo></math></p> <p>&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>)</mo><mo>&#160;</mo><mn>2</mn><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>-</mo><mn>6</mn><msqrt><mn>3</mn></msqrt><mi>sin</mi><mi>x</mi><mi>cos</mi><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>4</mn><msup><mi>sin</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>4</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mn>6</mn><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi><mo>&#160;</mo><mo>-</mo><mn>6</mn><msqrt><mn>3</mn></msqrt><mi>sin</mi><mi>x</mi><mi>cos</mi><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mi>cos</mi><mi>x</mi><mo>&#160;</mo><mo>(</mo><mi>cos</mi><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt><mi>sin</mi><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#8660;</mo><msubsup><mo>[</mo><mrow><mi>cos</mi><mi>x</mi><mo>&#160;</mo><mo>-</mo><msqrt><mn>3</mn></msqrt><mi>sin</mi><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn></mrow><mrow><mi>cos</mi><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn></mrow></msubsup><mo>&#8660;</mo><msubsup><mo>[</mo><mrow><mi>tan</mi><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>3</mn></mfrac></mrow><mrow><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>2</mn></mfrac><mo>+</mo><mi>k</mi><mi mathvariant="normal">&#960;</mi></mrow></msubsup><mo>&#8660;</mo><msubsup><mo>[</mo><mrow><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>6</mn></mfrac><mo>&#160;</mo><mo>+</mo><mi>k</mi><mi mathvariant="normal">&#960;</mi></mrow><mrow><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>2</mn></mfrac><mo>+</mo><mi>k</mi><mi mathvariant="normal">&#960;</mi></mrow></msubsup><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>(</mo><mi>k</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi><mo>)</mo></math></p>
Hướng dẫn Giải Bài 4 (trang 37, SGK Toán Đại số & Giải Tích 11)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 4 (trang 37, SGK Toán Đại số & Giải Tích 11)
GV: GV colearn