Cho đường tròn (O) và một điểm A cố định trên đường tròn. Tìm quỹ tích các trung điểm M của dây AB khi điểm B di động trên đường tròn đó.
Giải :
Phần thuận: Giả sử M là trung điểm của dây AB. Ta có (định lí).
Khi B di động trên (O), điểm M luôn nhìn OA cố định dưới góc vuông, vậy M thuộc đường tròn đường kính OA.
Phần đảo: Lấy điểm M' bất kig trên đường tròn đường kính OA.
Nối M' với A, đường thẳng M'A cắt đường tròn (O) tại B'. Nối M' với O ta có hay suy ra M' là trung điểm của AB'.
Kết luận: Tập hợp các trung điểm của dây AB là đường tròn đường kính OA.