Ôn tập chương III
Hướng dẫn giải Bài 96 (Trang 105 SGK Toán 9 Hình học, Tập 2)
<p>Cho tam gi&aacute;c ABC nội tiếp đường tr&ograve;n (O) v&agrave; tia ph&acirc;n gi&aacute;c của g&oacute;c A cắt đường tr&ograve;n tại M. Vẽ đường cao AH. Chứng minh rằng :</p> <p>a) OM đi qua trung điểm của d&acirc;y BC ;</p> <p>b) AM l&agrave; tia ph&acirc;n gi&aacute;c của g&oacute;c OAH.</p> <p><strong>Giải :</strong></p> <p>a) V&igrave; AM l&agrave; tia ph&acirc;n gi&aacute;c&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover></math> n&ecirc;n</p> <p><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>A</mi><mi>M</mi></mrow><mo>^</mo></mover><mo>=</mo><mover><mrow><mi>M</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover></math></p> <p><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mover><mrow><mi>B</mi><mi>M</mi></mrow><mo>&#9180;</mo></mover><mo>=</mo><mover><mrow><mi>M</mi><mi>C</mi></mrow><mo>&#9180;</mo></mover></math></p> <p>Suy ra M l&agrave; điểm ch&iacute;nh giữa của cung&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>&#9180;</mo></mover></math>, từ đ&oacute;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>M</mi><mo>&#8869;</mo><mi>B</mi><mi>C</mi></math> v&agrave; OM đi qua trung điểm của BC (định l&iacute;).</p> <p>b)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>M</mi><mo>&#8869;</mo><mi>B</mi><mi>C</mi><mo>,</mo><mo>&#160;</mo><mi>A</mi><mi>H</mi><mo>&#8869;</mo><mi>B</mi><mi>C</mi><mo>&#160;</mo></math>vậy OM//AH, từ đ&oacute;<img class="wscnph" src="" width="135" height="148" /></p> <p><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>H</mi><mi>A</mi><mi>M</mi></mrow><mo>^</mo></mover><mo>=</mo><mover><mrow><mi>A</mi><mi>M</mi><mi>O</mi></mrow><mo>^</mo></mover></math> (so le trong)<span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span>(1)</p> <p><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8710;</mo><mi>O</mi><mi>A</mi><mi>M</mi><mo>&#160;</mo></math>c&acirc;n (OA = OM)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mover><mrow><mi>O</mi><mi>A</mi><mi>M</mi></mrow><mo>^</mo></mover><mo>=</mo><mover><mrow><mi>A</mi><mi>M</mi><mi>O</mi></mrow><mo>^</mo></mover></math><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span>&nbsp; (2)</p> <p>So s&aacute;nh (1) v&agrave; (2), c&oacute;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>H</mi><mi>A</mi><mi>M</mi></mrow><mo>^</mo></mover><mo>=</mo><mover><mrow><mi>O</mi><mi>A</mi><mi>M</mi></mrow><mo>^</mo></mover><mo>.</mo></math></p> <p>Vậy AM l&agrave; tia ph&acirc;n gi&aacute;c của&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>O</mi><mi>A</mi><mi>H</mi></mrow><mo>^</mo></mover></math>.</p>
Hướng dẫn Giải Bài 96 (Trang 105, SGK Toán Hình học 9, Tập 2)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 96 (Trang 105, SGK Toán Hình học 9, Tập 2)
GV: GV colearn