Ôn tập chương III
Hướng dẫn giải Bài 95 (Trang 105 SGK Toán 9 Hình học, Tập 2)
<p>C&aacute;c đường cao hạ từ A v&agrave; B của tam gi&aacute;c ABC cắt nhau tại H (g&oacute;c C kh&aacute;c&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo>&#176;</mo></math>) v&agrave; cắt đường tr&ograve;n ngoại tiếp tam gi&aacute;c ABC lần lượt tại D v&agrave; E. Chứng minh rằng :&nbsp;</p> <p>a) CD = CE;<span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span>b)<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8710;</mo><mi>B</mi><mi>H</mi><mi>D</mi></math> c&acirc;n<span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span>c) CD = CH</p> <p><strong>Giải :</strong></p> <p>a) AD&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8869;</mo><mi>B</mi><mi>C</mi></math> tại A' n&ecirc;n&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>A</mi><mo>'</mo><mi>B</mi></mrow><mo>^</mo></mover></math>=<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo>&#176;</mo></math>.</p> <p>V&igrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>A</mi><mo>'</mo><mi>B</mi></mrow><mo>^</mo></mover></math> l&agrave; g&oacute;c c&oacute; đỉnh ở trong đường tr&ograve;n n&ecirc;n:</p> <p><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#9180;</mo></mover><mo>+</mo><mover><mrow><mi>D</mi><mi>C</mi></mrow><mo>&#9180;</mo></mover><mo>=</mo><mn>180</mn><mo>&#176;</mo></math><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span>(1)</p> <p>Cũng vậy, v&igrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mi>E</mi><mo>&#8869;</mo><mi>A</mi><mi>C</mi></math> tại B' n&ecirc;n&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi><mo>'</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>=</mo><mn>90</mn><mo>&#176;</mo></math>, ta c&oacute;:</p> <p><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#9180;</mo></mover><mo>+</mo><mover><mrow><mi>C</mi><mi>E</mi></mrow><mo>&#9180;</mo></mover><mo>=</mo><mn>180</mn><mo>&#176;</mo></math><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span>(2)</p> <p>So s&aacute;nh (1) v&agrave; (2) suy ra&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>D</mi><mi>C</mi></mrow><mo>&#9180;</mo></mover><mo>=</mo><mover><mrow><mi>C</mi><mi>E</mi></mrow><mo>&#9180;</mo></mover><mo>&#160;</mo><mi>h</mi><mi>a</mi><mi>y</mi><mo>&#160;</mo><mi>D</mi><mi>C</mi><mo>&#160;</mo><mo>=</mo><mi>C</mi><mi>E</mi><mo>.</mo></math></p> <p><em><strong><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span>C&aacute;ch chứng minh kh&aacute;c:</strong></em></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>D</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><mover><mrow><mi>C</mi><mi>B</mi><mi>E</mi></mrow><mo>^</mo></mover></math> (hai g&oacute;c nhọn c&oacute; cạnh tương ứng vu&ocirc;ng g&oacute;c,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>D</mi><mo>&#8869;</mo><mi>B</mi><mi>C</mi><mo>,</mo><mo>&#160;</mo><mi>A</mi><mi>C</mi><mo>&#8869;</mo><mi>B</mi><mi>E</mi><mo>)</mo></math></p> <p><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mover><mrow><mi>C</mi><mi>D</mi></mrow><mo>&#9180;</mo></mover><mo>=</mo><mover><mrow><mi>C</mi><mi>E</mi></mrow><mo>&#9180;</mo></mover><mo>&#8658;</mo><mi>C</mi><mi>D</mi><mo>=</mo><mi>C</mi><mi>E</mi></math></p> <p>b)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>E</mi><mi>B</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><mfrac><mrow><mi>E</mi><mi>C</mi></mrow><mn>2</mn></mfrac></math><img class="wscnph" src="" width="166" height="169" /></p> <p><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>C</mi><mi>B</mi><mi>D</mi></mrow><mo>^</mo></mover><mo>=</mo><mfrac><mover><mrow><mi>D</mi><mi>C</mi></mrow><mo>&#9180;</mo></mover><mn>2</mn></mfrac></math></p> <p>M&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>D</mi><mi>C</mi></mrow><mo>&#9180;</mo></mover><mo>=</mo><mover><mrow><mi>E</mi><mi>C</mi></mrow><mo>&#9180;</mo></mover><mo>&#8658;</mo><mover><mrow><mi>E</mi><mi>B</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><mover><mrow><mi>C</mi><mi>B</mi><mi>D</mi></mrow><mo>^</mo></mover><mo>&#8658;</mo><mo>&#8710;</mo><mi>B</mi><mi>H</mi><mi>D</mi><mo>&#160;</mo></math>c&acirc;n (v&igrave; trong tam gi&aacute;c n&agrave;y, BA' l&agrave; đường cao, vừa l&agrave; ph&acirc;n gi&aacute;c).</p> <p>c) Từ tam gi&aacute;c c&acirc;n BHD suy ra HA'=A'D (BA' l&agrave; đường trung trực của cạnh HD). Điểm C nằm tr&ecirc;n đường trung trực của HD n&ecirc;n CH = CD.</p> <p>&nbsp;</p>
Hướng dẫn Giải Bài 95 (Trang 105, SGK Toán Hình học 9, Tập 2)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 95 (Trang 105, SGK Toán Hình học 9, Tập 2)
GV: GV colearn