Bài 3: Hằng đẳng thức đáng nhớ
Khám phá 3 trang 20 Toán 8 tập 1
<p><strong>Kh&aacute;m ph&aacute; 3 trang 20 To&aacute;n 8 Tập 1:&nbsp;</strong>Ho&agrave;n th&agrave;nh c&aacute;c ph&eacute;p nh&acirc;n đa thức sau v&agrave;o vở, thu gọn kết quả nhận được:</p> <p>(a + b)<sup>3</sup>&nbsp;= (a + b)(a + b)<sup>2</sup></p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = (a + b)(&hellip;)</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = &hellip;</p> <p>(a &ndash; b)<sup>3</sup>&nbsp;= (a &ndash; b)(a &ndash; b)<sup>2</sup></p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = (a &ndash; b)(&hellip;)</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = &hellip;</p> <p><strong>Lời giải:</strong></p> <p>(a + b)<sup>3</sup>&nbsp;= (a + b)(a + b)<sup>2</sup></p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = (a + b)(a<sup>2</sup>&nbsp;+ 2ab + b<sup>2</sup>)</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = a(a<sup>2</sup>&nbsp;+ 2ab + b<sup>2</sup>) + b(a<sup>2</sup>&nbsp;+ 2ab + b<sup>2</sup>)</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = a.a<sup>2</sup>&nbsp;+ a.2ab + a.b<sup>2</sup>&nbsp;+ b.a<sup>2</sup>&nbsp;+ b.2ab + b.b<sup>2</sup></p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = a<sup>3</sup>&nbsp;+ 2a<sup>2</sup>b + ab<sup>2</sup>&nbsp;+ a<sup>2</sup>b + 2ab<sup>2</sup>&nbsp;+ b<sup>3</sup></p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = a<sup>3</sup>&nbsp;+ (2a<sup>2</sup>b + a<sup>2</sup>b) + (ab<sup>2</sup>&nbsp;+ 2ab<sup>2</sup>) + b<sup>3</sup></p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = a<sup>3</sup>&nbsp;+ 3a<sup>2</sup>b + 3ab<sup>2</sup>&nbsp;+ b<sup>3</sup>.</p> <p>(a &ndash; b)<sup>3</sup>&nbsp;= (a &ndash; b)(a &ndash; b)<sup>2</sup></p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = (a &ndash; b)(a<sup>2</sup>&nbsp;&ndash; 2ab + b<sup>2</sup>)</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = a(a<sup>2</sup>&nbsp;&ndash; 2ab + b<sup>2</sup>) &ndash; b(a<sup>2</sup>&nbsp;&ndash; 2ab + b<sup>2</sup>)</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = a.a<sup>2</sup>&nbsp;&ndash; a.2ab + a.b<sup>2</sup>&nbsp;&ndash; b.a<sup>2</sup>&nbsp;+ b.2ab &ndash; b.b<sup>2</sup></p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = a<sup>3</sup>&nbsp;&ndash; 2a<sup>2</sup>b + ab<sup>2</sup>&nbsp;&ndash; a<sup>2</sup>b + 2ab<sup>2</sup>&nbsp;&ndash; b<sup>3</sup></p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = a<sup>3</sup>&nbsp;&ndash; (2a<sup>2</sup>b + a<sup>2</sup>b) + (ab<sup>2</sup>&nbsp;+ 2ab<sup>2</sup>) &ndash; b<sup>3</sup></p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = a<sup>3</sup>&nbsp;&ndash; 3a<sup>2</sup>b + 3ab<sup>2</sup>&nbsp;&ndash; b<sup>3</sup>.</p>
Xem lời giải bài tập khác cùng bài