Bài 2: Phương trình mặt phẳng
Hướng dẫn giải Bài 10 (Trang 81 SGK Toán Hình học 12)
<p>Giải bài toán sau đây bằng phương pháp tọa độ:</p>
<p>Cho hình lập phương <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi><mo>.</mo><mi>A</mi><mo>'</mo><mi>B</mi><mo>'</mo><mi>C</mi><mo>'</mo><mi>D</mi><mo>'</mo></math> cạnh bằng 1.</p>
<p>a) Chứng minh rằng hai mặt phẳng (AB'D') và (BC'D) song song với nhau.</p>
<p>b) Tính khoảng cách giữa hai mặt phẳng nói trên.</p>
<p>Giải:</p>
<p>Chọn hệ trục tọa độ như hình vẽ. Ta có:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>(</mo><mn>0</mn><mo>;</mo><mn>0</mn><mo>;</mo><mn>0</mn><mo>)</mo><mo>,</mo><mo> </mo><mo> </mo><mo> </mo><mi>B</mi><mo>(</mo><mn>1</mn><mo>;</mo><mn>0</mn><mo>;</mo><mn>0</mn><mo>)</mo><mo>,</mo><mo> </mo><mo> </mo><mi>C</mi><mo>(</mo><mn>1</mn><mo>;</mo><mn>1</mn><mo>;</mo><mn>0</mn><mo>)</mo><mo>,</mo><mo> </mo><mo> </mo><mi>D</mi><mo>(</mo><mn>0</mn><mo>;</mo><mn>1</mn><mo>;</mo><mn>0</mn><mo>)</mo><mspace linebreak="newline"/><mi>A</mi><mo>'</mo><mo>(</mo><mn>0</mn><mo>;</mo><mn>0</mn><mo>;</mo><mn>1</mn><mo>)</mo><mo>,</mo><mo> </mo><mo> </mo><mi>B</mi><mo>'</mo><mo>(</mo><mn>1</mn><mo>;</mo><mn>0</mn><mo>;</mo><mn>1</mn><mo>)</mo><mo>,</mo><mo> </mo><mo> </mo><mi>C</mi><mo>'</mo><mo>(</mo><mn>1</mn><mo>;</mo><mn>1</mn><mo>;</mo><mn>1</mn><mo>)</mo><mo>,</mo><mo> </mo><mo> </mo><mi>D</mi><mo>'</mo><mo>(</mo><mn>0</mn><mo>;</mo><mn>1</mn><mo>;</mo><mn>1</mn><mo>)</mo><mspace linebreak="newline"/></math> </p>
<p><img class="wscnph" src="" width="350" height="195" /></p>
<p>a) Đặt <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>α</mi></mfenced><mo>=</mo><mo>(</mo><mi>A</mi><mi>B</mi><mo>'</mo><mi>D</mi><mo>'</mo><mo>)</mo><mo> </mo><mi>v</mi><mi>à</mi><mo> </mo><mfenced><mi>β</mi></mfenced><mo>=</mo><mo>(</mo><mi>B</mi><mi>C</mi><mo>'</mo><mi>D</mi><mo>)</mo><mo>.</mo></math> Ta có <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi><mo>'</mo></mrow><mo>→</mo></mover><mo>=</mo><mo>(</mo><mn>1</mn><mo>;</mo><mn>0</mn><mo>;</mo><mn>1</mn><mo>)</mo><mo> </mo><mi>và</mi><mo> </mo><mover><mrow><mi>A</mi><mi>D</mi><mo>'</mo></mrow><mo>→</mo></mover><mo>=</mo><mo>(</mo><mn>0</mn><mo>;</mo><mn>1</mn><mo>;</mo><mn>1</mn><mo>)</mo><mo>,</mo></math></p>
<p>suy ra mặt phẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>α</mi></mfenced></math> có vec tơ pháp tuyến là: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><msub><mi>n</mi><mi>α</mi></msub><mo>→</mo></mover><mo>=</mo><mfenced open="[" close="]"><mrow><mover><mrow><mi>A</mi><mi>B</mi><mo>'</mo></mrow><mo>→</mo></mover><mo>,</mo><mover><mrow><mi>A</mi><mi>D</mi><mo>'</mo></mrow><mo>→</mo></mover></mrow></mfenced><mo>=</mo><mo>(</mo><mn>1</mn><mo>;</mo><mn>1</mn><mo>-</mo><mn>1</mn><mo>)</mo></math></p>
<p>Vậy phương trình của mặt phẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>α</mi></mfenced></math> là x+y-z=0.</p>
<p>Ta có <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>→</mo></mover><mo>'</mo><mo>=</mo><mo>(</mo><mn>0</mn><mo>;</mo><mn>1</mn><mo>;</mo><mn>1</mn><mo>)</mo></math> và <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>D</mi></mrow><mo>→</mo></mover><mo>=</mo><mo>(</mo><mo>-</mo><mn>1</mn><mo>;</mo><mn>1</mn><mo>;</mo><mn>0</mn><mo>)</mo></math></p>
<p>Suy ra mặt phẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>β</mi></mfenced></math> có vec tơ pháp tuyến là <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><msub><mi>n</mi><mi>β</mi></msub><mo>→</mo></mover><mo>=</mo><mfenced open="[" close="]"><mrow><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>→</mo></mover><mo>'</mo><mo>,</mo><mover><mrow><mi>B</mi><mi>D</mi></mrow><mo>→</mo></mover></mrow></mfenced><mo>=</mo><mo>(</mo><mo>-</mo><mn>1</mn><mo>;</mo><mo>-</mo><mn>1</mn><mo>;</mo><mn>1</mn><mo>)</mo></math></p>
<p>Phương trình mặt phẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>β</mi></mfenced></math> là:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>(</mo><mi>x</mi><mo>-</mo><mn>1</mn><mo>)</mo><mo>-</mo><mn>1</mn><mo>.</mo><mi>y</mi><mo>+</mo><mn>1</mn><mo>.</mo><mi>z</mi><mo>=</mo><mn>0</mn><mo>⇔</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>-</mo><mi>z</mi><mo>-</mo><mn>1</mn><mo>=</mo><mn>0</mn><mo>.</mo></math></p>
<p>Ta có: <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>1</mn></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>1</mn></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mrow><mo>-</mo><mn>1</mn></mrow></mfrac><mo> </mo><mo>≠</mo><mfrac><mn>0</mn><mrow><mo>-</mo><mn>1</mn></mrow></mfrac></math>, vậy hai mặt phẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>α</mi></mfenced><mo> </mo><mi>và</mi><mo> </mo><mfenced><mi>β</mi></mfenced></math> song song với nhau.</p>
<p>b) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mfenced><mrow><mfenced><mi>α</mi></mfenced><mo>,</mo><mfenced><mi>β</mi></mfenced></mrow></mfenced><mo>=</mo><mi>d</mi><mfenced><mrow><mi>A</mi><mo>,</mo><mfenced><mi>β</mi></mfenced></mrow></mfenced><mo>=</mo><mfrac><mfenced open="|" close="|"><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><msqrt><msup><mn>1</mn><mn>2</mn></msup><mo>+</mo><msup><mn>1</mn><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup></msqrt></mfrac><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac><mo>.</mo></math></p>
<p> </p>
<p> </p>
Xem lời giải bài tập khác cùng bài