Bài 2: Phương trình mặt phẳng
Hướng dẫn giải Hoạt động 1 (Trang 70 SGK Toán Hình học 12)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Trong kh&ocirc;ng gian <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>x</mi><mi>y</mi><mi>z</mi></math>&nbsp;cho ba điểm <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mfenced><mrow><mn>2</mn><mo>;</mo><mo>-</mo><mn>1</mn><mo>;</mo><mn>3</mn></mrow></mfenced><mo>,</mo><mo>&nbsp;</mo><mi>B</mi><mfenced><mrow><mn>4</mn><mo>;</mo><mn>0</mn><mo>;</mo><mn>1</mn></mrow></mfenced><mo>,</mo><mo>&nbsp;</mo><mi>C</mi><mfenced><mrow><mo>-</mo><mn>10</mn><mo>;</mo><mn>5</mn><mo>;</mo><mn>3</mn></mrow></mfenced></math>. H&atilde;y t&igrave;m tọa độ một vecto ph&aacute;p tuyến</p> <p>của mặt phẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>A</mi><mi>B</mi><mi>C</mi></mrow></mfenced></math>.</p> <div class="content_method_container"> <p class="content_method_header"><strong class="content_method">Phương ph&aacute;p giải - Xem chi tiết</strong></p> <div class="content_method_content"> <p>- V&eacute;c tơ ph&aacute;p tuyến của mặt phẳng vu&ocirc;ng g&oacute;c với cả hai v&eacute;c tơ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&rarr;</mo></mover></math> v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&rarr;</mo></mover></math></p> <p>- T&iacute;nh t&iacute;ch c&oacute; hướng của hai v&eacute;c tơ v&agrave; chọn ra một v&eacute;c tơ ph&aacute;p tuyến của mặt phẳng.</p> </div> </div> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p>Ta c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mspace linebreak="newline"></mspace><mspace linebreak="newline"></mspace><mspace linebreak="newline"></mspace><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&rarr;</mo></mover><mo>=</mo><mfenced><mrow><mn>2</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>-</mo><mn>2</mn></mrow></mfenced><mo>;</mo><mo>&nbsp;</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&rarr;</mo></mover><mo>=</mo><mfenced><mrow><mo>-</mo><mn>12</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>0</mn></mrow></mfenced><mspace linebreak="newline"></mspace><mfenced open="[" close="]"><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&rarr;</mo></mover><mo>,</mo><mo>&nbsp;</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&rarr;</mo></mover></mrow></mfenced><mo>=</mo><mfenced><mrow><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>&nbsp;</mo><mo>,</mo><mo>&nbsp;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>12</mn></mtd></mtr></mtable></mfenced><mo>&nbsp;</mo><mo>,</mo><mo>&nbsp;</mo></mrow></mfenced></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>12</mn></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced></mrow></mfenced><mspace linebreak="newline"></mspace><mo>=</mo><mfenced><mrow><mn>12</mn><mo>,</mo><mo>&nbsp;</mo><mn>24</mn><mo>,</mo><mo>&nbsp;</mo><mn>24</mn></mrow></mfenced><mo>=</mo><mn>12</mn><mfenced><mrow><mn>1</mn><mo>,</mo><mo>&nbsp;</mo><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mn>2</mn></mrow></mfenced></math><span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;&amp;#x2192;&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mspace width=&quot;thickmathspace&quot; /&gt;&lt;mspace width=&quot;thickmathspace&quot; /&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;&amp;#x2192;&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn&gt;12&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;/math&gt;"><span id="MJXc-Node-58" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-59" class="mjx-mrow"><span id="MJXc-Node-60" class="mjx-munderover"><span class="mjx-stack"><span class="mjx-over"><span id="MJXc-Node-64" class="mjx-mo"></span></span></span></span></span></span></span></p> <p>Chọn <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>n</mi><mo>&rarr;</mo></mover><mfenced><mrow><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn></mrow></mfenced></math>&nbsp;l&agrave; ph&aacute;p tuyến của mặt phẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>A</mi><mi>B</mi><mi>C</mi></mrow></mfenced></math>.</p> <p><strong><em>Lưu &yacute;</em></strong>: C&aacute;c em thể chọn v&eacute;c tơ ph&aacute;p tuyến kh&aacute;c , chẳng hạn như&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>n</mi><mo>&rarr;</mo></mover><mfenced><mrow><mo>-</mo><mn>1</mn><mo>,</mo><mo>&nbsp;</mo><mo>-</mo><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mo>-</mo><mn>2</mn></mrow></mfenced></math> hay&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>n</mi><mo>&rarr;</mo></mover><mfenced><mrow><mn>12</mn><mo>,</mo><mo>&nbsp;</mo><mn>24</mn><mo>,</mo><mo>&nbsp;</mo></mrow></mfenced></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>24</mn></mrow></mfenced></math> nhưng để tiện cho t&iacute;nh to&aacute;n ta thường chọn tọa độ đơn giản nhất&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>n</mi><mo>&rarr;</mo></mover><mfenced><mrow><mn>1</mn><mo>,</mo><mo>&nbsp;</mo><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mn>2</mn></mrow></mfenced></math></p>
Xem lời giải bài tập khác cùng bài