Bài 1. Vectơ trong không gian
Hướng dẫn giải Bài 7 (Trang 92 SGK Toán Hình học 11)
<p>Gọi M v&agrave; N lần lượt l&agrave; trung điểm của c&aacute;c cạnh AC v&agrave; BD của tứ diện ABCD. Gọi I l&agrave; trung điểm của đoạn thẳng</p> <p>MN v&agrave; P l&agrave; một điểm bất k&igrave; trong kh&ocirc;ng gian. Chứng minh rằng:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>a)</mtext><mo>&#160;</mo><mover><mrow><mi>I</mi><mi>A</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>I</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>I</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>I</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mn>0</mn><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>)</mo><mo>&#160;</mo><mover><mrow><mi>P</mi><mi>I</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>4</mn></mfrac></mstyle><mfenced><mrow><mover><mrow><mi>P</mi><mi>A</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>P</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>P</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>P</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced></math></p> <p><strong>Giải:</strong></p> <p><img class="wscnph" src="https://static.colearn.vn:8413/v1.0/upload/library/24022022/d433a790-9046-41bd-8813-d2bb41548395.PNG" /></p> <p>a) Ta c&oacute;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>I</mi><mi>M</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>I</mi><mi>N</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mn>0</mn><mo>&#8594;</mo></mover></math></p> <p>m&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mover><mrow><mi>I</mi><mi>M</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>I</mi><mi>A</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>I</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mn>2</mn><mover><mrow><mi>I</mi><mi>N</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>I</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>I</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover></math></p> <p>n&ecirc;n&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>(</mo><mover><mrow><mi>I</mi><mi>M</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>I</mi><mi>N</mi></mrow><mo>&#8594;</mo></mover><mo>)</mo><mo>=</mo><mover><mn>0</mn><mo>&#8594;</mo></mover></math></p> <p>suy ra&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>I</mi><mi>A</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>I</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>I</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>I</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mn>0</mn><mo>&#8594;</mo></mover></math></p> <p>b) Với điểm P bất k&igrave; trong kh&ocirc;ng gian ta c&oacute;:&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>I</mi><mi>A</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>P</mi><mi>A</mi></mrow><mo>&#8594;</mo></mover><mo>-</mo><mover><mrow><mi>P</mi><mi>I</mi></mrow><mo>&#8594;</mo></mover><mo>,</mo><mo>&#160;</mo><mover><mrow><mi>I</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>P</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>-</mo><mover><mrow><mi>P</mi><mi>I</mi></mrow><mo>&#8594;</mo></mover><mspace linebreak="newline"/><mover><mrow><mi>I</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>P</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>-</mo><mover><mrow><mi>P</mi><mi>I</mi></mrow><mo>&#8594;</mo></mover><mo>,</mo><mo>&#160;</mo><mover><mrow><mi>I</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>P</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>-</mo><mover><mrow><mi>P</mi><mi>I</mi></mrow><mo>&#8594;</mo></mover><mspace linebreak="newline"/><mi>V</mi><mi>&#7853;</mi><mi>y</mi><mo>&#160;</mo><mover><mrow><mi>I</mi><mi>A</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>I</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>I</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>I</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>P</mi><mi>A</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>P</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>P</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>P</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>-</mo><mn>4</mn><mover><mrow><mi>P</mi><mi>I</mi></mrow><mo>&#8594;</mo></mover></math></p> <p>m&agrave; theo c&acirc;u a), ta c&oacute;:</p> <p>&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>I</mi><mi>A</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>I</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>I</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>I</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mn>0</mn><mo>&#8594;</mo></mover><mo>&#160;</mo><mi>n&#234;n</mi><mo>&#160;</mo><mi>suy</mi><mo>&#160;</mo><mi>ra</mi><mo>:</mo><mspace linebreak="newline"/><mover><mrow><mi>P</mi><mi>I</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>4</mn></mfrac></mstyle><mfenced><mrow><mover><mrow><mi>P</mi><mi>A</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>P</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>P</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>P</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced></math></p>
Giải bài tập 7 (SGK Toán 11, trang 92, Hình học)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Giải bài tập 7 (SGK Toán 11, trang 92, Hình học)
GV: GV colearn