Bài 1. Vectơ trong không gian
Hướng dẫn giải Hoạt động 7 (Trang 89 SGK Toán Hình học 11)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Cho ba vecto<strong>&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>a</mi><mo>&#8594;</mo></mover></math>&nbsp;</strong>; <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>b</mi><mo>&#8594;</mo></mover></math>; <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>c</mi><mo>&#8594;</mo></mover></math> trong kh&ocirc;ng gian. Chứng minh rằng nếu <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>a</mi><mo>&#8594;</mo></mover></math>+<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>b</mi><mo>&#8594;</mo></mover></math>+<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>c</mi><mo>&#8594;</mo></mover></math>=<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mn>0</mn><mo>&#8594;</mo></mover></math> v&agrave; một trong ba số <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>,<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>,<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>&nbsp;</p> <p>kh&aacute;c kh&ocirc;ng th&igrave; ba vecto <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>a</mi><mo>&#8594;</mo></mover></math>;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>b</mi><mo>&#8594;</mo></mover></math>;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>c</mi><mo>&#8594;</mo></mover></math><strong> </strong>đồng phẳng.</p> <p class="content_method_header"><strong class="content_method">Phương ph&aacute;p giải&nbsp;</strong></p> <div class="content_method_content"> <p>Ba vecto đồng phẳng nếu ta c&oacute; thể biểu diễn một vecto theo hai vecto c&ograve;n lại.</p> </div> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p>Giả sử <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8800;</mo></math>0&nbsp;ta c&oacute;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>a</mi><mo>&#8594;</mo></mover></math>+<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>b</mi><mo>&#8594;</mo></mover></math>+<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>c</mi><mo>&#8594;</mo></mover></math>=<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mn>0</mn><mo>&#8594;</mo></mover></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>a</mi><mo>&#8594;</mo></mover></math>+<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>b</mi><mo>&#8594;</mo></mover></math>= <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>c</mi><mo>&#8594;</mo></mover></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>c</mi><mo>&#8594;</mo></mover></math>=<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mi>m</mi></mrow><mi>p</mi></mfrac><mover><mi>a</mi><mo>&#8594;</mo></mover><mo>+</mo><mfrac><mrow><mo>-</mo><mi>n</mi></mrow><mi>p</mi></mfrac><mover><mi>b</mi><mo>&#8594;</mo></mover></math></p> <p>Do đ&oacute;, ba vecto <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>a</mi><mo>&#8594;</mo></mover></math>; <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>b</mi><mo>&#8594;</mo></mover></math>; <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>c</mi><mo>&#8594;</mo></mover></math><strong>&nbsp;</strong>đồng phẳng theo định l&iacute; 1.</p>
Xem lời giải bài tập khác cùng bài