Bài 1. Vectơ trong không gian
Hướng dẫn giải Hoạt động 5 (Trang 89 SGK Toán Hình học 11)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Cho h&igrave;nh hộp <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi><mo>.</mo><mi>E</mi><mi>F</mi><mi>G</mi><mi>H</mi></math>. Gọi <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math>&nbsp;v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi></math>&nbsp;lần lượt l&agrave; trung điểm của c&aacute;c cạnh <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi></math>&nbsp;v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mi>C</mi></math>. Chứng minh rằng c&aacute;c</p> <p>đường thẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mi>K</mi></math> v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>D</mi></math> song song với mặt phẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>A</mi><mi>F</mi><mi>C</mi></mrow></mfenced></math>. Từ đ&oacute; suy ra ba vecto&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>F</mi></mrow><mo>&#8594;</mo></mover><mo>;</mo><mo>&#160;</mo><mover><mrow><mi>I</mi><mi>K</mi></mrow><mo>&#8594;</mo></mover><mo>;</mo><mo>&#160;</mo><mover><mrow><mi>E</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover></math> đồng phẳng.</p> <p class="content_method_header"><strong class="content_method">Phương ph&aacute;p giải&nbsp;</strong></p> <div class="content_method_content"> <p>Ba v&eacute;c tơ được gọi l&agrave; đồng phẳng nếu gi&aacute; của ch&uacute;ng c&ugrave;ng song song với một mặt phẳng.</p> </div> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><img src="https://img.loigiaihay.com/picture/2021/1227/8.PNG" width="451" height="230" /></p> <p>&nbsp;</p> <p>&nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math>&nbsp;v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi></math>&nbsp;lần lượt l&agrave; trung điểm của c&aacute;c cạnh <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi></math>&nbsp;v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mi>C</mi></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mi>K</mi></math>&nbsp;l&agrave; đường trung b&igrave;nh của <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8710;</mo><mi>A</mi><mi>B</mi><mi>C</mi></math>&nbsp;n&ecirc;n&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mi>K</mi></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8741;</mo></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>C</mi></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8834;</mo></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>A</mi><mi>C</mi><mi>F</mi></mrow></mfenced></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mi>I</mi><mi>K</mi><mo>&#8741;</mo><mfenced><mrow><mi>A</mi><mi>C</mi><mi>F</mi></mrow></mfenced></math></p> <p>H&igrave;nh hộp <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi><mo>.</mo><mi>E</mi><mi>F</mi><mi>G</mi><mi>H</mi></math>&nbsp;n&ecirc;n&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>A</mi><mi>D</mi><mi>H</mi><mi>E</mi></mrow></mfenced><mo>&#8741;</mo><mfenced><mrow><mi>B</mi><mi>C</mi><mi>G</mi><mi>F</mi></mrow></mfenced></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mi>C</mi><mo>&#8741;</mo><mi>E</mi><mi>D</mi></math> (l&agrave; đường ch&eacute;o trong c&aacute;c h&igrave;nh b&igrave;nh h&agrave;nh <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mi>C</mi><mi>G</mi><mi>F</mi></math>&nbsp;v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>D</mi><mi>H</mi><mi>E</mi></math></p> <p>N&ecirc;n&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>D</mi><mo>&#8741;</mo><mfenced><mrow><mi>A</mi><mi>F</mi><mi>C</mi></mrow></mfenced></math></p> <p>Ngo&agrave;i ra &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>F</mi><mo>&#8834;</mo><mfenced><mrow><mi>A</mi><mi>C</mi><mi>F</mi></mrow></mfenced></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo></math>ba vecto <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>F</mi></mrow><mo>&#8594;</mo></mover><mo>;</mo><mo>&#160;</mo><mover><mrow><mi>I</mi><mi>K</mi></mrow><mo>&#8594;</mo></mover><mo>;</mo><mo>&#160;</mo><mover><mrow><mi>E</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover></math>&nbsp;đồng phẳng (v&igrave; gi&aacute; của ch&uacute;ng song song với một mặt phẳng, c&oacute; thể chọn một</p> <p>mặt phẳng bất k&igrave; song song với&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>A</mi><mi>C</mi><mi>F</mi></mrow></mfenced></math>)</p>
Xem lời giải bài tập khác cùng bài