Bài 1. Vectơ trong không gian
Hướng dẫn giải Bài 2 (Trang 91 SGK Toán Hình học 11)
<p>Cho h&igrave;nh hộp ABCD.A'B'C'D'. Chứng minh rằng:</p> <p>&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>)</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>B</mi><mo>'</mo><mi>C</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>D</mi><mi>D</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>A</mi><mi>C</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>;</mo><mspace linebreak="newline"/><mi>b</mi><mo>)</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>-</mo><mover><mrow><mi>D</mi><mo>'</mo><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>-</mo><mover><mrow><mi>B</mi><mo>'</mo><mi>D</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>B</mi><mi>B</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>;</mo><mspace linebreak="newline"/><mi>c</mi><mo>)</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>B</mi><mi>A</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>D</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>C</mi><mo>'</mo><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mn>0</mn><mo>&#8594;</mo></mover></math></p> <p><strong>Giải:</strong></p> <p>a) &Aacute;p dụng quy tắc h&igrave;nh hộp ta c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>B</mi><mo>'</mo><mi>C</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>D</mi><mi>D</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>A</mi><mi>A</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>A</mi><mi>C</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover></math></p> <p>C&aacute;ch kh&aacute;c&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>B</mi><mo>'</mo><mi>C</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>D</mi><mi>D</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>C</mi><mi>C</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>A</mi><mi>C</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover></math></p> <p><img class="wscnph" src="https://static.colearn.vn:8413/v1.0/upload/library/24022022/93322b5e-7a43-421e-a4f2-d3472ade2aff.PNG" /></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">b</mi><mo>)</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>-</mo><mover><mrow><mi>D</mi><mi>D</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>-</mo><mover><mrow><mi>B</mi><mi>D</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>B</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>D</mi><mi>D</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>D</mi><mo>'</mo><mi>B</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>B</mi><mi>B</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mspace linebreak="newline"/><mi mathvariant="normal">c</mi><mo>)</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>C</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>B</mi><mi>A</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>D</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>C</mi><mo>'</mo><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>C</mi><mi>D</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>D</mi><mo>'</mo><mi>B</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>B</mi><mo>'</mo><mi>A</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>A</mi><mi>A</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mn>0</mn><mo>&#8594;</mo></mover></math></p>
Giải bài tập 2 (SGK Toán 11, trang 91, Hình học)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Giải bài tập 2 (SGK Toán 11, trang 91, Hình học)
GV: GV colearn