Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Chọn lớp
Lớp 6
Lớp 7
Lớp 8
Lớp 9
Lớp 10
Lớp 11
Lớp 12
Đăng ký
Đăng nhập
Trang chủ
Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Trang chủ
/
Giải bài tập
/ Lớp 10 / Toán /
Bài 2: Hệ bất phương trình bậc nhất hai ẩn
Bài 2: Hệ bất phương trình bậc nhất hai ẩn
Lý thuyết Hệ bất phương trình bậc nhất hai ẩn
<h2><strong>1. Khái niệm hệ bất phương trình bậc nhất hai ẩn</strong></h2> <p>+) Hệ bất phương trình bậc nhất hai ẩn là một hệ gồm hai hay nhiều bất phương trình bậc nhất hai ẩn.</p> <p>Ví dụ:</p> <p>2x + 3y > 10</p> <p>5x+3y<-8</p> <p>+) Cặp số <span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 19.36px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">(</mo><mrow class="MJX-TeXAtom-ORD"><msub><mi>x</mi><mn>0</mn></msub></mrow><mo>;</mo><mrow class="MJX-TeXAtom-ORD"><msub><mi>y</mi><mn>0</mn></msub></mrow><mo stretchy="false">)</mo></math>"><span id="MJXc-Node-56" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-57" class="mjx-mrow"><span id="MJXc-Node-58" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">(</span></span><span id="MJXc-Node-59" class="mjx-texatom"><span id="MJXc-Node-60" class="mjx-mrow"><span id="MJXc-Node-61" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-62" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span></span><sub><span class="mjx-sub"><span id="MJXc-Node-63" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">0</span></span></span></sub></span></span></span><span id="MJXc-Node-64" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">;</span></span><span id="MJXc-Node-65" class="mjx-texatom MJXc-space1"><span id="MJXc-Node-66" class="mjx-mrow"><span id="MJXc-Node-67" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-68" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">y</span></span></span><sub><span class="mjx-sub"><span id="MJXc-Node-69" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">0</span></span></span></sub></span></span></span><span id="MJXc-Node-70" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">)</span></span></span></span></span> là <strong>nghiệm</strong> của một hệ BPT bậc nhất hai ẩn khi <span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 19.36px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">(</mo><mrow class="MJX-TeXAtom-ORD"><msub><mi>x</mi><mn>0</mn></msub></mrow><mo>;</mo><mrow class="MJX-TeXAtom-ORD"><msub><mi>y</mi><mn>0</mn></msub></mrow><mo stretchy="false">)</mo></math>"><span id="MJXc-Node-71" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-72" class="mjx-mrow"><span id="MJXc-Node-73" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">(</span></span><span id="MJXc-Node-74" class="mjx-texatom"><span id="MJXc-Node-75" class="mjx-mrow"><span id="MJXc-Node-76" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-77" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span></span><sub><span class="mjx-sub"><span id="MJXc-Node-78" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">0</span></span></span></sub></span></span></span><span id="MJXc-Node-79" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">;</span></span><span id="MJXc-Node-80" class="mjx-texatom MJXc-space1"><span id="MJXc-Node-81" class="mjx-mrow"><span id="MJXc-Node-82" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-83" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">y</span></span></span><sub><span class="mjx-sub"><span id="MJXc-Node-84" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">0</span></span></span></sub></span></span></span><span id="MJXc-Node-85" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">)</span></span></span></span></span> đồng thời là nghiệm của tất cả các BPT trong hệ đó.</p> <p>Ví dụ: cặp số <span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 19.36px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">(</mo><mn>7</mn><mo>;</mo><mn>0</mn><mo stretchy="false">)</mo></math>"><span id="MJXc-Node-86" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-87" class="mjx-mrow"><span id="MJXc-Node-88" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">(</span></span><span id="MJXc-Node-89" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">7</span></span><span id="MJXc-Node-90" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">;</span></span><span id="MJXc-Node-91" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">0</span></span><span id="MJXc-Node-92" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">)</span></span></span></span></span> là một nghiệm của hệ BPT <span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 19.36px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>{</mo><mtable columnalign="left" rowspacing="4pt" columnspacing="1em"><mtr><mtd><mn>2</mn><mi>x</mi><mo>+</mo><mn>3</mn><mi>y</mi><mo>&gt;</mo><mn>10</mn></mtd></mtr><mtr><mtd><mi>x</mi><mo>&#x2212;</mo><mi>y</mi><mo>&#x2264;</mo><mn>7</mn></mtd></mtr></mtable><mo fence="true" stretchy="true" symmetric="true"></mo></mrow></math>"><span id="MJXc-Node-93" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-94" class="mjx-mrow"><span id="MJXc-Node-95" class="mjx-mrow"><span id="MJXc-Node-96" class="mjx-mo"></span></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>2</mn><mi>x</mi><mo> </mo><mo>+</mo><mn>3</mn><mi>y</mi><mo>></mo><mn>10</mn></mtd></mtr><mtr><mtd><mi>x</mi><mo>-</mo><mi>y</mi><mo>≤</mo><mn>7</mn></mtd></mtr></mtable></mfenced></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable columnalign="left" rowspacing="4pt" columnspacing="1em"><mtr><mtd><mn></mn></mtd></mtr></mtable><mo fence="true" stretchy="true" symmetric="true"></mo></mrow></math></span></p> <h2><strong>2. Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn trên mặt phẳng tọa độ</strong></h2> <p>+) Trong mặt phẳng tọa độ Oxy, tập hợp các điểm có tọa độ là nghiệm của hệ bất phương trình bậc nhất hai ẩn là <strong>miền nghiệm</strong> của hệ BPT đó.</p> <p>+) Miền nghiệm của hệ là giao các miền nghiệm của các bất phương trình trong hệ.</p> <p>+) <strong>Biểu diễn miền nghiệm của một hệ BPT bậc nhất hai ẩn:</strong></p> <p>Bước 1: Trên cùng một mặt phẳng tọa độ, biểu diễn miền nghiệm của mỗi bất phương trình của hệ.</p> <p>Bước 2: Phần giao của các miền nghiệm là miền nghiệm của hệ BPT.</p> <h2><strong>3. Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của biểu thức F = ax + by trên một miền đa giác</strong></h2> <p>Cho hệ BPT bậc nhất hai ẩn x, y có miền nghiệm là miền đa giác <span id="MathJax-Element-7-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 19.36px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow class="MJX-TeXAtom-ORD"><msub><mi>A</mi><mn>1</mn></msub></mrow><mrow class="MJX-TeXAtom-ORD"><msub><mi>A</mi><mn>2</mn></msub></mrow><mo>.</mo><mo>.</mo><mo>.</mo><mrow class="MJX-TeXAtom-ORD"><msub><mi>A</mi><mi>n</mi></msub></mrow></math>"><span id="MJXc-Node-117" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-118" class="mjx-mrow"><span id="MJXc-Node-119" class="mjx-texatom"><span id="MJXc-Node-120" class="mjx-mrow"><span id="MJXc-Node-121" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-122" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span><sub><span class="mjx-sub"><span id="MJXc-Node-123" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">1</span></span></span></sub></span></span></span><span id="MJXc-Node-124" class="mjx-texatom"><span id="MJXc-Node-125" class="mjx-mrow"><span id="MJXc-Node-126" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-127" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span><sub><span class="mjx-sub"><span id="MJXc-Node-128" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">2</span></span></span></sub></span></span></span><span id="MJXc-Node-129" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span><span id="MJXc-Node-130" class="mjx-mo MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">.</span></span><span id="MJXc-Node-131" class="mjx-mo MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">.</span></span><span id="MJXc-Node-132" class="mjx-texatom MJXc-space1"><span id="MJXc-Node-133" class="mjx-mrow"><span id="MJXc-Node-134" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-135" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span><sub><span class="mjx-sub"><span id="MJXc-Node-136" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">n</span></span></span></sub></span></span></span></span></span></span>.</p> <p>Khi đó: Giá trị lớn nhất (hay nhỏ nhất) của biể thức <span id="MathJax-Element-8-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 19.36px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo stretchy="false">(</mo><mi>x</mi><mo>;</mo><mi>y</mi><mo stretchy="false">)</mo><mo>=</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>n</mi><mi>y</mi></math>"><span id="MJXc-Node-137" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-138" class="mjx-mrow"><span id="MJXc-Node-139" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">F</span></span><span id="MJXc-Node-140" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">(</span></span><span id="MJXc-Node-141" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span><span id="MJXc-Node-142" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">;</span></span><span id="MJXc-Node-143" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">y</span></span><span id="MJXc-Node-144" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">)</span></span><span id="MJXc-Node-145" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-146" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">m</span></span><span id="MJXc-Node-147" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span><span id="MJXc-Node-148" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R">+</span></span><span id="MJXc-Node-149" class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I">n</span></span><span id="MJXc-Node-150" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">y</span></span></span></span></span>, với <span id="MathJax-Element-9-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 19.36px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">(</mo><mi>x</mi><mo>;</mo><mi>y</mi><mo stretchy="false">)</mo></math>"><span id="MJXc-Node-151" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-152" class="mjx-mrow"><span id="MJXc-Node-153" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">(</span></span><span id="MJXc-Node-154" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span><span id="MJXc-Node-155" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">;</span></span><span id="MJXc-Node-156" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">y</span></span><span id="MJXc-Node-157" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">)</span></span></span></span></span> là tọa độ các điểm thuộc miền đa giác <span id="MathJax-Element-10-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 19.36px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow class="MJX-TeXAtom-ORD"><msub><mi>A</mi><mn>1</mn></msub></mrow><mrow class="MJX-TeXAtom-ORD"><msub><mi>A</mi><mn>2</mn></msub></mrow><mo>.</mo><mo>.</mo><mo>.</mo><mrow class="MJX-TeXAtom-ORD"><msub><mi>A</mi><mi>n</mi></msub></mrow></math>"><span id="MJXc-Node-158" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-159" class="mjx-mrow"><span id="MJXc-Node-160" class="mjx-texatom"><span id="MJXc-Node-161" class="mjx-mrow"><span id="MJXc-Node-162" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-163" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span><sub><span class="mjx-sub"><span id="MJXc-Node-164" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">1</span></span></span></sub></span></span></span><span id="MJXc-Node-165" class="mjx-texatom"><span id="MJXc-Node-166" class="mjx-mrow"><span id="MJXc-Node-167" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-168" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span><sub><span class="mjx-sub"><span id="MJXc-Node-169" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">2</span></span></span></sub></span></span></span><span id="MJXc-Node-170" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span><span id="MJXc-Node-171" class="mjx-mo MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">.</span></span><span id="MJXc-Node-172" class="mjx-mo MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">.</span></span><span id="MJXc-Node-173" class="mjx-texatom MJXc-space1"><span id="MJXc-Node-174" class="mjx-mrow"><span id="MJXc-Node-175" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-176" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span><sub><span class="mjx-sub"><span id="MJXc-Node-177" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">n</span></span></span></sub></span></span></span></span></span></span>, đạt được tại một trong các đỉnh của đa giác đó.</p>
Xem lời giải bài tập khác cùng bài
<span data-v-a7c68f28="">Hoạt động khởi động (Trang 33 SGK Toán 10, Bộ Chân trời sáng tạo, Tập 1)</span>
Xem lời giải
<span data-v-a7c68f28="">Hoạt động khám phá 1 (Trang 33 SGK Toán 10, Bộ Chân trời sáng tạo, Tập 1)</span>
Xem lời giải
Thực hành 1 (Trang 34 SGK Toán 10 - Bộ Chân Trời Sáng Tạo, Tập 1)
Xem lời giải
<span data-v-a7c68f28="">Hoạt động khám phá 2 (Trang 34 SGK Toán 10, Bộ Chân trời sáng tạo, Tập 1)</span>
Xem lời giải
<span data-v-a7c68f28="">Thực hành 2 (Trang 35 SGK Toán 10, Bộ Chân trời sáng tạo, Tập 1)</span>
Xem lời giải
<span data-v-a7c68f28="">Vận dụng (Trang 37 SGK Toán 10, Bộ Chân trời sáng tạo, Tập 1)</span>
Xem lời giải
<span data-v-a7c68f28="">Hướng dẫn giải Bài 1 (Trang 37 SGK Toán 10, Bộ Chân trời sáng tạo, Tập 1)</span>
Xem lời giải
<span data-v-a7c68f28="">Hướng dẫn giải Bài 2 (Trang 38 SGK Toán 10, Bộ Chân trời sáng tạo, Tập 1)</span>
Xem lời giải
<span data-v-a7c68f28="">Hướng dẫn giải Bài 3 (Trang 38 SGK Toán 10, Bộ Chân trời sáng tạo, Tập 1)</span>
Xem lời giải
<span data-v-a7c68f28="">Hướng dẫn giải Bài 4 (Trang 38 SGK Toán 10, Bộ Chân trời sáng tạo, Tập 1)</span>
Xem lời giải
<span data-v-a7c68f28="">Hướng dẫn giải Bài 5 (Trang 38 SGK Toán 10, Bộ Chân trời sáng tạo, Tập 1)</span>
Xem lời giải