Bài 2: Định Lí Đảo Và Hệ Quả Của Định Lí Ta-Lét
Hướng dẫn giải Bài 9 (Trang 63 SGK Toán Hình học 8, Tập 2)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Cho tam gi&aacute;c&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-4" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span></span></span>&nbsp;v&agrave; điểm&nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi></math></span></span>&nbsp;tr&ecirc;n cạnh&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi></math></span></span>&nbsp;sao cho&nbsp;<span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;13&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-13" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-14" class="mjx-mrow"><span id="MJXc-Node-15" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-16" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-17" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-18" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">13</span></span><span id="MJXc-Node-19" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-20" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">5</span></span><span id="MJXc-Node-21" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">c</span></span><span id="MJXc-Node-22" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">m</span></span><span id="MJXc-Node-23" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-24" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-25" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-26" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-27" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">4</span></span><span id="MJXc-Node-28" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-29" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">5</span></span><span id="MJXc-Node-30" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">c</span></span><span id="MJXc-Node-31" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">m</span></span></span></span></span>. T&iacute;nh tỉ số c&aacute;c khoảng c&aacute;ch từ điểm&nbsp;<span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-32" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-33" class="mjx-mrow"><span id="MJXc-Node-34" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span></span>&nbsp;v&agrave;&nbsp;<span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math></span></span>&nbsp;đến cạnh&nbsp;<span id="MathJax-Element-7-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>C</mi></math></span></span>.</p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><strong class="content_detail"><img src="https://img.loigiaihay.com/picture/2018/0718/b9-trang-63-sgk-toan-8-t2-c2.jpg" /></strong></p> <p><span class="content_detail">Gọi DH v&agrave; BK lần lượt l&agrave; khoảng c&aacute;ch từ B v&agrave; D đến cạnh AC<br />Ta c&oacute; DH//BK (v&igrave; c&ugrave;ng vu&ocirc;ng g&oacute;c với AC)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mfrac><mrow><mi>D</mi><mo>&#8290;</mo><mi>H</mi></mrow><mrow><mi>B</mi><mo>&#8290;</mo><mi>K</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>D</mi></mrow><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mrow></mfrac></mstyle></math> (theo hệ quả định l&yacute; Ta Let)<br />M&agrave; AB=AD+DB (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>&#8658;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>=</mo><mn>13</mn></mrow><mo>,</mo><mn>5</mn><mo>+</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>=</mo><mn>18</mn><mo>&#8290;</mo><mrow><mo>(</mo><mi>cm</mi><mo>)</mo></mrow><mo>&#8290;</mo></math><br />Vậy <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mrow><mi>D</mi><mo>&#8290;</mo><mi>H</mi></mrow><mrow><mi>B</mi><mo>&#8290;</mo><mi>K</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>13</mn><mo>,</mo><mn>5</mn></mrow><mn>18</mn></mfrac><mo>=</mo><mfrac><mn>3</mn><mn>4</mn></mfrac></mstyle></math><br /></span><span class="content_detail">Vậy tỉ số khoảng c&aacute;ch từ điểm D v&agrave; B đến AC bằng <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mn>3</mn><mn>4</mn></mfrac></mstyle></math></span><strong class="content_detail"><br /></strong></p>
Xem lời giải bài tập khác cùng bài