Bài 2: Định Lí Đảo Và Hệ Quả Của Định Lí Ta-Lét
Hướng dẫn giải Bài 12 (Trang 64 SGK Toán Hình học 8, Tập 2)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>C&oacute; thể đo dược chiều rộng của một kh&uacute;c s&ocirc;ng m&agrave; kh&ocirc;ng cần phải sang bờ b&ecirc;n kia hay kh&ocirc;ng?</p> <p>Người ta tiến h&agrave;nh đo đạc c&aacute;c yếu tố h&igrave;nh học cần thiết để t&igrave;nh chiều rộng của kh&uacute;c s&ocirc;ng m&agrave; kh&ocirc;ng cần phải sang bờ b&ecirc;n kia(h18). Nh&igrave;n h&igrave;nh vẽ, H&atilde;y m&ocirc; tả những c&ocirc;ng việc cần l&agrave;m v&agrave; t&iacute;nh khoảng c&aacute;ch&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mo>=</mo><mi>x</mi></math></span></span>&nbsp;theo&nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;msup&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-7" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-8" class="mjx-mrow"><span id="MJXc-Node-9" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-10" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-11" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-12" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">a</span></span><span id="MJXc-Node-13" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-14" class="mjx-msup MJXc-space1"><span class="mjx-base"><span id="MJXc-Node-15" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span><span class="mjx-sup"><span id="MJXc-Node-16" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&prime;</span></span></span></span><span id="MJXc-Node-17" class="mjx-msup"><span class="mjx-base"><span id="MJXc-Node-18" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span><span class="mjx-sup"><span id="MJXc-Node-19" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&prime;</span></span></span></span><span id="MJXc-Node-20" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-21" class="mjx-msup MJXc-space3"><span class="mjx-base"><span id="MJXc-Node-22" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">a</span></span></span><span class="mjx-sup"><span id="MJXc-Node-23" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&prime;</span></span></span></span><span id="MJXc-Node-24" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-25" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-26" class="mjx-msup"><span class="mjx-base"><span id="MJXc-Node-27" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span><span class="mjx-sup"><span id="MJXc-Node-28" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&prime;</span></span></span></span><span id="MJXc-Node-29" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-30" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">h</span></span></span></span></span>.</p> <p><img src="https://img.loigiaihay.com/picture/2018/0718/b12-trang-64-sgk-toan-8-t2-c2.jpg" /></p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p>&nbsp;</p> <p>M&ocirc; tả c&aacute;ch l&agrave;m:</p> <p>* Chọn một điểm A cố định b&ecirc;n m&eacute;p bờ s&ocirc;ng b&ecirc;n kia (chẳng hạn như l&agrave; một th&acirc;n c&acirc;y), đặt hai điểm B v&agrave; B' thẳng h&agrave;ng với A, điểm B s&aacute;t m&eacute;p bờ c&ograve;n lại v&agrave;&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-31" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-32" class="mjx-mrow"><span id="MJXc-Node-33" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-34" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span></span></span>&nbsp;ch&iacute;nh l&agrave; khoảng c&aacute;ch cần đo.</p> <p>* Tr&ecirc;n hai đường thẳng vu&ocirc;ng g&oacute;c với&nbsp;<span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;msup&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;/math&gt;"><span id="MJXc-Node-35" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-36" class="mjx-mrow"><span id="MJXc-Node-37" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-38" class="mjx-msup"><span class="mjx-base"><span id="MJXc-Node-39" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span><span class="mjx-sup"><span id="MJXc-Node-40" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&prime;</span></span></span></span></span></span></span>&nbsp;tại&nbsp;<span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math></span></span>&nbsp;v&agrave;&nbsp;<span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msup&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>B</mi><mo>&prime;</mo></msup></math></span></span> lấy C v&agrave; <span id="MathJax-Element-8-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msup&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>C</mi><mo>&prime;</mo></msup></math></span></span>&nbsp;sao cho&nbsp;<span id="MathJax-Element-9-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;/math&gt;"><span id="MJXc-Node-57" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-58" class="mjx-mrow"><span id="MJXc-Node-59" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-60" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-61" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-62" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-63" class="mjx-msup MJXc-space1"><span class="mjx-base"><span id="MJXc-Node-64" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span><span class="mjx-sup"><span id="MJXc-Node-65" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&prime;</span></span></span></span></span></span></span>&nbsp;thẳng h&agrave;ng.<br />* Đo độ d&agrave;i c&aacute;c đoạn&nbsp;<span id="MathJax-Element-10-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;msup&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;/math&gt;"><span id="MJXc-Node-66" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-67" class="mjx-mrow"><span id="MJXc-Node-68" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-69" class="mjx-msup"><span class="mjx-base"><span id="MJXc-Node-70" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span><span class="mjx-sup"><span id="MJXc-Node-71" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&prime;</span></span></span></span><span id="MJXc-Node-72" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-73" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">h</span></span><span id="MJXc-Node-74" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-75" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-76" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-77" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-78" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">a</span></span><span id="MJXc-Node-79" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-80" class="mjx-msup MJXc-space1"><span class="mjx-base"><span id="MJXc-Node-81" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span><span class="mjx-sup"><span id="MJXc-Node-82" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&prime;</span></span></span></span><span id="MJXc-Node-83" class="mjx-msup"><span class="mjx-base"><span id="MJXc-Node-84" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span><span class="mjx-sup"><span id="MJXc-Node-85" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&prime;</span></span></span></span><span id="MJXc-Node-86" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-87" class="mjx-msup MJXc-space3"><span class="mjx-base"><span id="MJXc-Node-88" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">a</span></span></span><span class="mjx-sup"><span id="MJXc-Node-89" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&prime;</span></span></span></span></span></span></span>. Từ đ&oacute; ta&nbsp;sẽ t&iacute;nh được đoạn&nbsp;<span id="MathJax-Element-11-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;"><span id="MJXc-Node-90" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-91" class="mjx-mrow"><span id="MJXc-Node-92" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-93" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-94" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=x.</span></span></span></span></span></p> <p><span id="MathJax-Element-11-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;"><span id="MJXc-Node-90" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-91" class="mjx-mrow"><span id="MJXc-Node-95" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I"><strong>Giải</strong></span></span></span></span></span></p> <p>Ta c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>B</mi><mo>&#8290;</mo><mi>C</mi><mo>&#10178;</mo><mi>A</mi><mo>&#8290;</mo><msup><mi>B</mi><mo>'</mo></msup></mstyle></math> v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msup><mi>B</mi><mo>'</mo></msup><msup><mi>C</mi><mo>'</mo></msup><mo>&#10178;</mo><mi>A</mi><msup><mi>B</mi><mo>'</mo></msup><mo>&#8658;</mo><mi>B</mi><mi>C</mi><mo>/</mo><mo>/</mo><msup><mi>B</mi><mo>'</mo></msup><msup><mi>C</mi><mo>'</mo></msup></mstyle></math><br />X&eacute;t <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><msup><mi>B</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>C</mi><mo>'</mo></msup></mstyle></math> c&oacute; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>B</mi><mi>C</mi><mo>/</mo><mo>/</mo><msup><mi>B</mi><mo>'</mo></msup><msup><mi>C</mi><mo>'</mo></msup><mrow><mo>(</mo><mi>B</mi><mo>&#8712;</mo><mi>A</mi><msup><mi>B</mi><mo>'</mo></msup><mo>,</mo><mi>C</mi><mo>&#8712;</mo><mi>A</mi><msup><mi>C</mi><mo>'</mo></msup><mo>)</mo></mrow></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mrow><mrow><mi>A</mi><mo>&#8290;</mo><msup><mi>B</mi><mo>'</mo></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mrow><mrow><mi>B</mi><mo>&#8290;</mo><msup><mi>C</mi><mo>'</mo></msup></mrow></mfrac></mstyle></math> (hệ quả định l&yacute; Talet) m&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>A</mi><mo>&#8290;</mo><msup><mi>B</mi><mo>'</mo></msup><mo>=</mo><mi>x</mi><mo>+</mo><mi>h</mi></mstyle></math> n&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mi>h</mi></mrow></mfrac><mo>=</mo><mfrac><mi>a</mi><msup><mi>a</mi><mo>'</mo></msup></mfrac></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8660;</mo><msup><mi>a</mi><mo>'</mo></msup><mo>&#8290;</mo><mi>x</mi><mo>=</mo><mi>a</mi><mo>&#8290;</mo><mi>x</mi><mo>+</mo><mi>a</mi><mo>&#8290;</mo><mi>h</mi></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8660;</mo><msup><mi>a</mi><mo>'</mo></msup><mo>&#8290;</mo><mi>x</mi><mo>-</mo><mi>a</mi><mo>&#8290;</mo><mi>x</mi><mo>=</mo><mi>a</mi><mo>&#8290;</mo><mi>h</mi></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8660;</mo><mi>x</mi><mo>&#8290;</mo><mrow><mo>(</mo><msup><mi>a</mi><mo>'</mo></msup><mo>-</mo><mi>a</mi><mo>)</mo></mrow><mo>=</mo><mi>a</mi><mo>&#8290;</mo><mi>h</mi></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>x</mi><mo>=</mo><mfrac><mrow><mi>a</mi><mo>&#8290;</mo><mi>h</mi></mrow><mrow><msup><mi>a</mi><mo>'</mo></msup><mo>-</mo><mi>a</mi></mrow></mfrac></mstyle></math><br />Vậy khoảng c&aacute;ch AB bằng <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mrow><mi>a</mi><mo>&#8290;</mo><mi>h</mi></mrow><mrow><msup><mi>a</mi><mo>'</mo></msup><mo>-</mo><mi>a</mi></mrow></mfrac></mstyle></math><br /><br /><br /></p> <p>&nbsp;</p> <p>&nbsp;</p> <p>&nbsp;</p> <p><br /><br /></p>
Xem lời giải bài tập khác cùng bài