Bài 2: Định Lí Đảo Và Hệ Quả Của Định Lí Ta-Lét
Hướng dẫn giải Bài 7 (Trang 62 SGK Toán Hình học 8, Tập 2)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>&nbsp;T&iacute;nh c&aacute;c độ d&agrave;i&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span><span id="MJXc-Node-4" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-5" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">y</span></span></span></span></span>&nbsp;trong h&igrave;nh 14.</p> <p><img src="https://img.loigiaihay.com/picture/2018/0718/b7-trang-62-sgk-toan-8-t2-c2.jpg" /></p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><span class="content_detail">* Trong h&igrave;nh 14a</span></p> <p><span class="content_detail"><span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mi>N</mi><mrow class="MJX-TeXAtom-ORD"><mo>/</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mo>/</mo></mrow><mi>E</mi><mi>F</mi></math></span></span>, theo hệ quả định l&iacute; Ta-l&eacute;t ta c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>M</mi><mo>&#8290;</mo><mi>N</mi></mrow><mrow><mi>E</mi><mo>&#8290;</mo><mi>F</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>M</mi><mo>&#8290;</mo><mi>D</mi></mrow><mrow><mi>D</mi><mo>&#8290;</mo><mi>E</mi></mrow></mfrac><mo>&#8290;</mo></math><br /></span></p> <p><span class="content_detail">M&agrave;&nbsp;<span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;9&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;28&lt;/mn&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;37&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/math&gt;"><span id="MJXc-Node-39" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-40" class="mjx-mrow"><span id="MJXc-Node-41" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-42" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-43" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-44" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">M</span></span><span id="MJXc-Node-45" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-46" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R">+</span></span><span id="MJXc-Node-47" class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I">M</span></span><span id="MJXc-Node-48" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-49" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-50" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">9</span></span><span id="MJXc-Node-51" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-52" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">5</span></span><span id="MJXc-Node-53" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R">+</span></span><span id="MJXc-Node-54" class="mjx-mn MJXc-space2"><span class="mjx-char MJXc-TeX-main-R">28</span></span><span id="MJXc-Node-55" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-56" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">37</span></span><span id="MJXc-Node-57" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-58" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">5.</span></span></span></span></span><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>&#8658;</mo><mfrac><mn>8</mn><mi>x</mi></mfrac><mo>=</mo><mpadded><mfrac><mrow><mn>9</mn><mo>,</mo><mn>5</mn></mrow><mrow><mn>37</mn><mo>,</mo><mn>5</mn></mrow></mfrac></mpadded><mo>&#8290;</mo><mo>&#8658;</mo><mi>x</mi><mo>=</mo><mfrac><mrow><mn>8.37</mn><mo>,</mo><mn>5</mn></mrow><mrow><mn>9</mn><mo>,</mo><mn>5</mn></mrow></mfrac><mo>=</mo><mfrac><mn>600</mn><mn>19</mn></mfrac><mo>&#8776;</mo><mn>31</mn></mrow><mo>,</mo><mn>6</mn></math><br /></span></p> <p><span class="content_detail">*Trong h&igrave;nh 14b</span></p> <p><span class="content_detail">Ta c&oacute; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msup><mi>A</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>B</mi><mo>'</mo></msup><mo>&#10178;</mo><mi>A</mi><mo>&#8290;</mo><msup><mi>A</mi><mo>'</mo></msup></mstyle></math> (giả thiết) v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#10178;</mo><mi>A</mi><mo>&#8290;</mo><msup><mi>A</mi><mo>'</mo></msup></mstyle></math> (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><msup><mi>A</mi><mo>'</mo></msup><msup><mi>B</mi><mo>'</mo></msup><mo>/</mo><mo>/</mo><mi>A</mi><mi>B</mi></mstyle></math> (từ vu&ocirc;ng g&oacute;c đến song song)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mfrac><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>&#8290;</mo><mi>O</mi></mrow><mrow><mi>O</mi><mo>&#8290;</mo><mi>A</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>B</mi><mo>'</mo></msup></mrow><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mrow></mfrac></mstyle></math> (Theo hệ quả định l&iacute; Ta-let)<br />hay <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mn>3</mn><mn>6</mn></mfrac><mo>=</mo><mfrac><mrow><mn>4</mn><mo>,</mo><mn>2</mn></mrow><mi>x</mi></mfrac></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mn>6.4</mn><mo>,</mo><mn>2</mn></mrow><mn>3</mn></mfrac><mo>=</mo><mn>8</mn><mo>,</mo><mn>4</mn></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>O</mi></mstyle></math> vu&ocirc;ng tại A n&ecirc;n &aacute;p dụng định l&yacute; Pitago ta c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>&#8290;</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mi>O</mi><mo>&#8290;</mo><msup><mi>B</mi><mn>2</mn></msup><mo>=</mo><mi>O</mi><mo>&#8290;</mo><msup><mi>A</mi><mn>2</mn></msup><mo>+</mo><mi>A</mi><mo>&#8290;</mo><mpadded><msup><mi>B</mi><mn>2</mn></msup></mpadded><mo>&#8290;</mo><mi mathvariant="normal">&#38;</mi><mo>&#8658;</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mn>6</mn><mn>2</mn></msup><mo>+</mo><mn>8</mn></mrow><mo>,</mo><msup><mn>4</mn><mn>2</mn></msup><mo>=</mo><mn>106</mn><mo>,</mo><mrow><mpadded><mn>56</mn></mpadded><mo>&#8290;</mo><mo>&#8658;</mo><mi>y</mi><mo>=</mo><msqrt><mn>106</mn><mo>,</mo><mn>56</mn></msqrt><mo>&#8776;</mo><mn>10</mn></mrow><mo>,</mo><mn>3</mn></math><br /></span></p>
Xem lời giải bài tập khác cùng bài