Bài 4: Đường Trung Bình Của Tam Giác -  Hình Thang
Hướng dẫn giải Bài 27 (Trang 80 SGK Toán Hình học 8, Tập 1)
<p><strong>Đề b&agrave;i</strong><br />Cho tứ gi&aacute;c ABCD. Gọi E, F, K theo thứ tự l&agrave; trung điểm của AD, BC, AC.<br />a) So s&aacute;nh c&aacute;c độ d&agrave;i EK v&agrave; CD, KF v&agrave; AB.<br />b) Chứng minh rằng <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>&#8804;</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>+</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow><mn>2</mn></mfrac><mo>.</mo></math></p> <p><strong>Lời giải chi tiết&nbsp;</strong></p> <p><strong><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/30062022/96ecd5fa-9339-4fb8-8d92-f571c7ee2500.PNG" /></strong></p> <p>a) X&eacute;t&nbsp;<span id="MathJax-Element-8-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo&gt;&amp;#x2206;&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-57" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-58" class="mjx-mrow"><span id="MJXc-Node-59" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&Delta;</span></span><span id="MJXc-Node-60" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-61" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-62" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>A</mi><mi>C</mi><mi>D</mi></math></span></span>&nbsp;c&oacute;&nbsp;<span id="MathJax-Element-9-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-63" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-64" class="mjx-mrow"><span id="MJXc-Node-65" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-66" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-67" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">K</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>,</mo><mi>K</mi></math></span></span>&nbsp;theo thứ tự l&agrave; trung điểm của&nbsp;<span id="MathJax-Element-10-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-68" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-69" class="mjx-mrow"><span id="MJXc-Node-70" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-71" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-72" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-73" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-74" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>D</mi><mo>,</mo><mi>A</mi><mi>C</mi></math></span></span>&nbsp;(giả thiết)</p> <p><span id="MathJax-Element-11-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo stretchy=&quot;false&quot;&gt;&amp;#x21D2;&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-75" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-76" class="mjx-mrow"><span id="MJXc-Node-77" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&rArr;</span></span><span id="MJXc-Node-78" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-79" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">K</span></span></span></span></span>&nbsp;l&agrave; đường trung b&igrave;nh của&nbsp;<span id="MathJax-Element-12-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo&gt;&amp;#x2206;&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-80" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-81" class="mjx-mrow"><span id="MJXc-Node-82" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&Delta;</span></span><span id="MJXc-Node-83" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-84" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-85" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span></span>&nbsp;(dấu hiệu nhận biết đường trung b&igrave;nh của tam gi&aacute;c)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mi>E</mi><mo>&#8290;</mo><mi>K</mi><mo>=</mo><mfrac><mrow><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow><mn>2</mn></mfrac><mo>&#8290;</mo></math>(t&iacute;nh chất đường trung b&igrave;nh của tam gi&aacute;c)</p> <p>- X&eacute;t <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math> c&oacute; K, F theo thứ tự l&agrave; trung điểm của AC, BC (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>F</mi><mo>&#8290;</mo><mi>K</mi></mstyle></math> l&agrave; đường trung b&igrave;nh của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math> (dấu hiệu nhận biết đường trung b&igrave;nh của tam gi&aacute;c)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>K</mi><mo>&#8290;</mo><mi>F</mi><mo>=</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mrow><mn>2</mn></mfrac></mstyle></math> (t&iacute;nh chất đường trung b&igrave;nh của tam gi&aacute;c).<br />b) TH1: Ba điểm E, K, F kh&ocirc;ng thẳng h&agrave;ng<br />X&eacute;t <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>E</mi><mo>&#8290;</mo><mi>F</mi><mo>&#8290;</mo><mi>K</mi></mstyle></math> c&oacute;: EF&lt;EK+KF (bất đẳng thức tam gi&aacute;c)<br />N&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>&#60;</mo><mi>E</mi><mo>&#8290;</mo><mi>K</mi><mo>+</mo><mi>K</mi><mo>&#8290;</mo><mi>F</mi><mo>=</mo><mfrac><mrow><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow><mn>2</mn></mfrac><mo>+</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>+</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow><mn>2</mn></mfrac></math><br />Hay <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>&#60;</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>+</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow><mn>2</mn></mfrac><mo>&#8290;</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math><br />TH2: Ba điểm E, K, F thẳng h&agrave;ng<br />Khi đ&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mi>E</mi><mo>&#8290;</mo><mi>K</mi><mo>+</mo><mi>K</mi><mo>&#8290;</mo><mi>F</mi><mo>=</mo><mfrac><mrow><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow><mn>2</mn></mfrac><mo>+</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>+</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow><mn>2</mn></mfrac></math><br />Hay <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>+</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow><mn>2</mn></mfrac></math> (2)<br />Từ (1) v&agrave; (2) suy ra <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>&#8804;</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>+</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow><mn>2</mn></mfrac><mo>.</mo></math></p> <p>&nbsp;</p>
Xem lời giải bài tập khác cùng bài