Bài 4: Đường Trung Bình Của Tam Giác - Hình Thang
Hướng dẫn giải Bài 27 (Trang 80 SGK Toán Hình học 8, Tập 1)
<p><strong>Đề bài</strong><br />Cho tứ giác ABCD. Gọi E, F, K theo thứ tự là trung điểm của AD, BC, AC.<br />a) So sánh các độ dài EK và CD, KF và AB.<br />b) Chứng minh rằng <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>≤</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>+</mo><mi>C</mi><mo>⁢</mo><mi>D</mi></mrow><mn>2</mn></mfrac><mo>.</mo></math></p>
<p><strong>Lời giải chi tiết </strong></p>
<p><strong><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/30062022/96ecd5fa-9339-4fb8-8d92-f571c7ee2500.PNG" /></strong></p>
<p>a) Xét <span id="MathJax-Element-8-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2206;</mo><mi>A</mi><mi>C</mi><mi>D</mi></math>"><span id="MJXc-Node-57" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-58" class="mjx-mrow"><span id="MJXc-Node-59" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">Δ</span></span><span id="MJXc-Node-60" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-61" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-62" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>A</mi><mi>C</mi><mi>D</mi></math></span></span> có <span id="MathJax-Element-9-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>,</mo><mi>K</mi></math>"><span id="MJXc-Node-63" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-64" class="mjx-mrow"><span id="MJXc-Node-65" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-66" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-67" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">K</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>,</mo><mi>K</mi></math></span></span> theo thứ tự là trung điểm của <span id="MathJax-Element-10-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>D</mi><mo>,</mo><mi>A</mi><mi>C</mi></math>"><span id="MJXc-Node-68" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-69" class="mjx-mrow"><span id="MJXc-Node-70" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-71" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-72" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-73" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-74" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>D</mi><mo>,</mo><mi>A</mi><mi>C</mi></math></span></span> (giả thiết)</p>
<p><span id="MathJax-Element-11-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">&#x21D2;</mo><mi>E</mi><mi>K</mi></math>"><span id="MJXc-Node-75" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-76" class="mjx-mrow"><span id="MJXc-Node-77" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">⇒</span></span><span id="MJXc-Node-78" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-79" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">K</span></span></span></span></span> là đường trung bình của <span id="MathJax-Element-12-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2206;</mo><mi>A</mi><mi>C</mi><mi>D</mi></math>"><span id="MJXc-Node-80" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-81" class="mjx-mrow"><span id="MJXc-Node-82" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">Δ</span></span><span id="MJXc-Node-83" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-84" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-85" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span></span> (dấu hiệu nhận biết đường trung bình của tam giác)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>E</mi><mo>⁢</mo><mi>K</mi><mo>=</mo><mfrac><mrow><mi>C</mi><mo>⁢</mo><mi>D</mi></mrow><mn>2</mn></mfrac><mo>⁢</mo></math>(tính chất đường trung bình của tam giác)</p>
<p>- Xét <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mstyle></math> có K, F theo thứ tự là trung điểm của AC, BC (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>F</mi><mo>⁢</mo><mi>K</mi></mstyle></math> là đường trung bình của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mstyle></math> (dấu hiệu nhận biết đường trung bình của tam giác)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>K</mi><mo>⁢</mo><mi>F</mi><mo>=</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow><mn>2</mn></mfrac></mstyle></math> (tính chất đường trung bình của tam giác).<br />b) TH1: Ba điểm E, K, F không thẳng hàng<br />Xét <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><mi>E</mi><mo>⁢</mo><mi>F</mi><mo>⁢</mo><mi>K</mi></mstyle></math> có: EF<EK+KF (bất đẳng thức tam giác)<br />Nên <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo><</mo><mi>E</mi><mo>⁢</mo><mi>K</mi><mo>+</mo><mi>K</mi><mo>⁢</mo><mi>F</mi><mo>=</mo><mfrac><mrow><mi>C</mi><mo>⁢</mo><mi>D</mi></mrow><mn>2</mn></mfrac><mo>+</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>+</mo><mi>C</mi><mo>⁢</mo><mi>D</mi></mrow><mn>2</mn></mfrac></math><br />Hay <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo><</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>+</mo><mi>C</mi><mo>⁢</mo><mi>D</mi></mrow><mn>2</mn></mfrac><mo>⁢</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math><br />TH2: Ba điểm E, K, F thẳng hàng<br />Khi đó: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mi>E</mi><mo>⁢</mo><mi>K</mi><mo>+</mo><mi>K</mi><mo>⁢</mo><mi>F</mi><mo>=</mo><mfrac><mrow><mi>C</mi><mo>⁢</mo><mi>D</mi></mrow><mn>2</mn></mfrac><mo>+</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>+</mo><mi>C</mi><mo>⁢</mo><mi>D</mi></mrow><mn>2</mn></mfrac></math><br />Hay <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>+</mo><mi>C</mi><mo>⁢</mo><mi>D</mi></mrow><mn>2</mn></mfrac></math> (2)<br />Từ (1) và (2) suy ra <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>≤</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>+</mo><mi>C</mi><mo>⁢</mo><mi>D</mi></mrow><mn>2</mn></mfrac><mo>.</mo></math></p>
<p> </p>
Xem lời giải bài tập khác cùng bài