Bài 4: Đường Trung Bình Của Tam Giác - Hình Thang
Hướng dẫn giải Bài 25 (Trang 80 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề bài</strong></p>
<p>Hình thang <span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi></math>"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-4" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-6" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span></span> có đáy <span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mo>,</mo><mi>C</mi><mi>D</mi><mo>.</mo></math>"><span id="MJXc-Node-7" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-8" class="mjx-mrow"><span id="MJXc-Node-9" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-10" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-11" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-12" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-13" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-14" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span></span></span></span> Gọi <span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>,</mo><mi>F</mi><mo>,</mo><mi>K</mi></math>"><span id="MJXc-Node-15" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-16" class="mjx-mrow"><span id="MJXc-Node-17" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-18" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-19" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">F</span></span><span id="MJXc-Node-20" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-21" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">K</span></span></span></span></span> theo thứ tự là trung điểm của <span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>D</mi><mo>,</mo><mi>B</mi><mi>C</mi><mo>,</mo><mi>B</mi><mi>D</mi><mo>.</mo></math>"><span id="MJXc-Node-22" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-23" class="mjx-mrow"><span id="MJXc-Node-24" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-25" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-26" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-27" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-28" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-29" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-30" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-31" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>.</mo></math></span></span> Chứng minh ba điểm <span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>,</mo><mi>K</mi><mo>,</mo><mi>F</mi></math>"><span id="MJXc-Node-33" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-34" class="mjx-mrow"><span id="MJXc-Node-35" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-36" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-37" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">K</span></span><span id="MJXc-Node-38" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-39" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">F</span></span></span></span></span> thẳng hàng.</p>
<p><strong>Lời giải chi tiết</strong></p>
<p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/30062022/cafb756f-0270-4e71-a8e6-95cd6c36076a.PNG" /><br />- Xét <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi mathvariant="normal">D</mi></mstyle></math> có: E, K lần lượt là trung điểm của AD, BD (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>E</mi><mo>⁢</mo><mi>K</mi></mstyle></math> là đường trung bình của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi mathvariant="normal">D</mi></mstyle></math> (dấu hiệu nhận biết đường trung bình của tam giác)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>E</mi><mi>K</mi><mo>/</mo><mo>/</mo><mi>A</mi><mi>B</mi></mstyle></math> (tính chất đường trung bình của tam giác) (1)<br />- Xét <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mstyle></math> có: F, K lần lượt là trung điểm của BC, BD (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>F</mi><mo>⁢</mo><mi>K</mi></mstyle></math>là đường trung bình của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mstyle></math> (dấu hiệu nhận biết đường trung bình của tam giác)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>F</mi><mi>K</mi><mo>/</mo><mo>/</mo><mi>D</mi><mi>C</mi></mstyle></math> (tính chất đường trung bình của tam giác)<br />Mặt khác, AB//DC (vì ABCD là hình thang) nên suy ra FK//AB (2)<br />Từ (1) và (2) ta có qua điểm K không thuộc AB có hai đường thẳng EK và FK cùng //AB nên theo tiên đề ơ-clit thì ba điểm E, K, F thẳng hàng. <br /><br /></p>
Xem lời giải bài tập khác cùng bài