Bài 4: Đường Trung Bình Của Tam Giác - Hình Thang
Hướng dẫn giải Bài 28 (Trang 80 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề bài</strong></p>
<p>Cho hình thang <span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi></math>"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-4" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">CD</span></span></span></span></span> (<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mrow class="MJX-TeXAtom-ORD"><mo>/</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mo>/</mo></mrow><mi>C</mi><mi>D</mi></math>"><span id="MJXc-Node-7" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-8" class="mjx-mrow"><span id="MJXc-Node-9" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-10" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-11" class="mjx-texatom"><span id="MJXc-Node-12" class="mjx-mrow"><span id="MJXc-Node-13" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">/</span></span></span></span><span id="MJXc-Node-14" class="mjx-texatom"><span id="MJXc-Node-15" class="mjx-mrow"><span id="MJXc-Node-16" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">/</span></span></span></span><span id="MJXc-Node-17" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-18" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span></span>), <span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi></math>"><span id="MJXc-Node-19" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-20" class="mjx-mrow"><span id="MJXc-Node-21" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span></span></span></span> là trung điểm của <span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>D</mi><mo>,</mo></math>"><span id="MJXc-Node-22" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-23" class="mjx-mrow"><span id="MJXc-Node-24" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-25" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-26" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span></span></span></span> <span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math>"><span id="MJXc-Node-27" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-28" class="mjx-mrow"><span id="MJXc-Node-29" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">F</span></span></span></span></span> là trung điểm của <span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mi>C</mi><mo>.</mo></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mi>C</mi><mo>.</mo></math></span></span> Đường thẳng <span id="MathJax-Element-7-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>F</mi></math>"><span id="MJXc-Node-35" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-36" class="mjx-mrow"><span id="MJXc-Node-37" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-38" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">F</span></span></span></span></span>cắt <span id="MathJax-Element-8-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mi>D</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mi>D</mi></math></span></span> ở <span id="MathJax-Element-9-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mo>,</mo></math>"><span id="MJXc-Node-43" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-44" class="mjx-mrow"><span id="MJXc-Node-45" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">I</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>,</mo></math></span></span> cắt <span id="MathJax-Element-10-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>C</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>C</mi></math></span></span> ở <span id="MathJax-Element-11-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi><mo>.</mo></math>"><span id="MJXc-Node-51" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-52" class="mjx-mrow"><span id="MJXc-Node-53" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">K</span></span><span id="MJXc-Node-54" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span></span></span></span></p>
<p>a) Chứng minh rằng <span id="MathJax-Element-12-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>K</mi><mo>=</mo><mi>K</mi><mi>C</mi><mo>,</mo><mi>B</mi><mi>I</mi><mo>=</mo><mi>I</mi><mi>D</mi><mo>.</mo></math>"><span id="MJXc-Node-55" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-56" class="mjx-mrow"><span id="MJXc-Node-57" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-58" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">K</span></span><span id="MJXc-Node-59" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-60" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">K</span></span><span id="MJXc-Node-61" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-62" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-63" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-64" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">I</span></span><span id="MJXc-Node-65" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-66" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">I</span></span><span id="MJXc-Node-67" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-68" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>K</mi><mo>=</mo><mi>K</mi><mi>C</mi><mo>,</mo><mi>B</mi><mi>I</mi><mo>=</mo><mi>I</mi><mi>D</mi><mo>.</mo></math></span></span></p>
<p>b) Cho <span id="MathJax-Element-13-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mo>=</mo><mn>6</mn><mspace width="thinmathspace" /><mi>c</mi><mi>m</mi><mo>,</mo><mi>C</mi><mi>D</mi><mo>=</mo><mn>10</mn><mspace width="thinmathspace" /><mi>c</mi><mi>m</mi><mo>.</mo></math>"><span id="MJXc-Node-69" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-70" class="mjx-mrow"><span id="MJXc-Node-71" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-72" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-73" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-74" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">6</span></span><span id="MJXc-Node-75" class="mjx-mspace"></span><span id="MJXc-Node-76" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">c</span></span><span id="MJXc-Node-77" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">m</span></span><span id="MJXc-Node-78" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-79" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-80" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-81" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-82" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">10</span></span><span id="MJXc-Node-83" class="mjx-mspace"></span><span id="MJXc-Node-84" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">c</span></span><span id="MJXc-Node-85" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">m</span></span><span id="MJXc-Node-86" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mo>=</mo><mn>6</mn><mspace width="thinmathspace"></mspace><mi>c</mi><mi>m</mi><mo>,</mo><mi>C</mi><mi>D</mi><mo>=</mo><mn>10</mn><mspace width="thinmathspace"></mspace><mi>c</mi><mi>m</mi><mo>.</mo></math></span></span> Tính các độ dài <span id="MathJax-Element-14-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>I</mi><mo>,</mo><mi>K</mi><mi>F</mi><mo>,</mo><mi>I</mi><mi>K</mi><mo>.</mo></math>"><span id="MJXc-Node-87" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-88" class="mjx-mrow"><span id="MJXc-Node-89" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-90" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">I</span></span><span id="MJXc-Node-91" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-92" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">K</span></span><span id="MJXc-Node-93" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">F</span></span><span id="MJXc-Node-94" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-95" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">I</span></span><span id="MJXc-Node-96" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">K</span></span><span id="MJXc-Node-97" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span></span></span></span></p>
<p><strong><span class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>I</mi><mo>,</mo><mi>K</mi><mi>F</mi><mo>,</mo><mi>I</mi><mi>K</mi><mo>.</mo></math>"><span class="mjx-math" aria-hidden="true"><span class="mjx-mrow"><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">Lời giải chi tiết </span></span></span></span></span></strong></p>
<p><span class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>I</mi><mo>,</mo><mi>K</mi><mi>F</mi><mo>,</mo><mi>I</mi><mi>K</mi><mo>.</mo></math>"><span class="mjx-math" aria-hidden="true"><span class="mjx-mrow"><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/30062022/111c3e25-54c5-4be7-92c8-d8e40ed22475.PNG" /></span></span></span></span></span></p>
<p>a) Hình thang ABCD có E, F lần lượt là trung điểm của AD và BC (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>E</mi><mo>⁢</mo><mi>F</mi></mstyle></math> là đường trung bình của hình thang ABCD (dấu hiệu nhận biết đường trung bình của hình thang )<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>E</mi><mi>F</mi><mo>/</mo><mo>/</mo><mi>A</mi><mi>B</mi><mo>/</mo><mo>/</mo><mi>C</mi><mi>D</mi></mstyle></math> (tính chất đường trung bình của hình thang)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>F</mi><mi>K</mi><mo>/</mo><mo>/</mo><mi>A</mi><mi>B</mi><mo>,</mo><mi>E</mi><mi>I</mi><mo>/</mo><mo>/</mo><mi>A</mi><mi>B</mi></mstyle></math><br />Xét <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mstyle></math> có: F là trung điểm của BC (giả thiết) và FK//AB (chứng minh trên)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>A</mi><mo>⁢</mo><mi>K</mi><mo>=</mo><mi>K</mi><mo>⁢</mo><mi>C</mi></mstyle></math> (Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ ba )</p>
<p>Xét <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>D</mi></mstyle></math> có: E là trung điểm của AD (giả thiết) và EI//AB (chứng minh trên)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>D</mi><mo>⁢</mo><mi>I</mi><mo>=</mo><mi>I</mi><mo>⁢</mo><mi>B</mi></mstyle></math> (Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ ba ).<br />b) vì EF là đường trung bình của hình thang ABCD (chứng minh trên)<br />nên <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>+</mo><mi>C</mi><mo>⁢</mo><mi>D</mi></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><mn>6</mn><mo>+</mo><mn>10</mn></mrow><mn>2</mn></mfrac><mo>=</mo><mpadded><mn>8</mn></mpadded><mo>⁢</mo><mi>cm</mi></math> (tính chất đường trung bình của hình thang)</p>
<p>Xét <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>D</mi></mstyle></math> có: AE=ED (giả thiết) và DI=IB (chứng minh trên)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>E</mi><mo>⁢</mo><mi>I</mi></mstyle></math> là đường trung bình của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>D</mi></mstyle></math> (dấu hiệu nhận biết đường trung bình của tam giác)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>E</mi><mo>⁢</mo><mi>I</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>⋅</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>⋅</mo><mn>6</mn><mo>=</mo><mn>3</mn><mo>⁢</mo><mrow><mo>(</mo><mi>cm</mi><mo>)</mo></mrow></mstyle></math> (tính chất đường trung bình của tam giác)</p>
<p>Xét <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mstyle></math> có: BF=FC (giả thiết) và AK=KC (chứng minh trên)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>K</mi><mo>⁢</mo><mi>F</mi></mstyle></math> là đường trung bình của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mstyle></math> (dấu hiệu nhận<br />biết đường trung bình của tam giác)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>K</mi><mo>⁢</mo><mi>F</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>⋅</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>⋅</mo><mn>6</mn><mo>=</mo><mn>3</mn><mo>⁢</mo><mrow><mo>(</mo><mi>cm</mi><mo>)</mo></mrow></mstyle></math> (tính chất đường trung bình của tam giác)<br />Lại có EF=EI+IK+KF<br />nên <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi><mo>=</mo><mi>E</mi><mo>⁢</mo><mi>F</mi><mo>-</mo><mrow><mo>(</mo><mi>E</mi><mo>⁢</mo><mi>I</mi><mo>+</mo><mi>K</mi><mo>⁢</mo><mi>F</mi><mo>)</mo></mrow><mo>=</mo><mn>8</mn><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>+</mo><mn>3</mn><mo>)</mo></mrow><mo>=</mo><mn>2</mn><mo>⁢</mo><mrow><mo>(</mo><mi>cm</mi><mo>)</mo></mrow><mo>.</mo></math></p>
Xem lời giải bài tập khác cùng bài