Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Chọn lớp
Lớp 6
Lớp 7
Lớp 8
Lớp 9
Lớp 10
Lớp 11
Lớp 12
Đăng ký
Đăng nhập
Trang chủ
Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Trang chủ
/
Giải bài tập
/ Lớp 8 / Toán học /
Bài 4: Đường Trung Bình Của Tam Giác - Hình Thang
Bài 4: Đường Trung Bình Của Tam Giác - Hình Thang
Hướng dẫn giải Bài 20 (Trang 79 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề bài</strong></p> <p>Tìm <span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span></span></span></span> trên hình <span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>41.</mn></math>"><span id="MJXc-Node-4" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-5" class="mjx-mrow"><span id="MJXc-Node-6" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">41.</span></span></span></span></span></p> <p><span class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>41.</mn></math>"><span class="mjx-math" aria-hidden="true"><span class="mjx-mrow"><span class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/28062022/27ec67bc-7d30-4e96-b70a-4aea70b5f7ca.PNG" /></span></span></span></span></span></p> <p><strong><span class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>41.</mn></math>"><span class="mjx-math" aria-hidden="true"><span class="mjx-mrow"><span class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">Lời giải chi tiết</span></span></span></span></span></strong></p> <p>Ta có: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>K</mi><mo>⁢</mo><mi>I</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>C</mi><mo>⁢</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>50</mn><mo>∘</mo></msup></mstyle></math> (giả thiết) mà hai góc này ở vị trí đồng vị nên IK//BC (dấu hiệu nhận biết hai đường thẳng song song)<br />Mà <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mi>K</mi><mo>⁢</mo><mi>C</mi><mo>=</mo><mpadded><mn>8</mn></mpadded><mo>⁢</mo><mi>cm</mi></math> suy ra K là trung điểm của AC.<br />Từ đó áp dụng định lí: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ ba.<br />Ta suy ra được I là trung điểm của AB.<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>I</mi><mo>⁢</mo><mi>A</mi><mo>=</mo><mi>I</mi><mo>⁢</mo><mi>B</mi><mo>=</mo><mpadded><mn>10</mn></mpadded><mo>⁢</mo><mi>cm</mi><mo>⇒</mo><mi>x</mi><mo>=</mo><mpadded><mn>10</mn></mpadded><mo>⁢</mo><mi>cm</mi></math></p>
Xem lời giải bài tập khác cùng bài
Hướng dẫn giải Bài 21 (Trang 79 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 22 (Trang 80 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 23 (Trang 80 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 24 (Trang 80 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 25 (Trang 80 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 26 (Trang 80 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 27 (Trang 80 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 28 (Trang 80 SGK Toán Hình học 8, Tập 1)
Xem lời giải