Bài 6: Dãy tỉ số bằng nhau
<div data-v-a7c68f28=""> <div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn Giải Hoạt động 2 (Trang 56 SGK Toán 7, Bộ Cánh diều, Tập 1)</span></div> </div>
<p><strong>Hoạt động 2 (Trang 56 SGK To&aacute;n 7, Bộ C&aacute;nh diều, Tập 1)</strong></p> <p>a) Cho tỉ lệ thức&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>6</mn><mn>10</mn></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>9</mn><mn>15</mn></mfrac></math>.</p> <p>So s&aacute;nh hai tỉ số&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>6</mn><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><mn>9</mn></mrow><mrow><mn>10</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>15</mn></mrow></mfrac><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mfrac><mrow><mn>6</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>9</mn></mrow><mrow><mn>10</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>15</mn></mrow></mfrac></math>với c&aacute;c tỉ số trong tỉ lệ thức đ&atilde; cho.</p> <p>&nbsp;</p> <p>b) Cho tỉ lệ thức&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>a</mi><mi>b</mi></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi>c</mi><mi>d</mi></mfrac><mo>&#160;</mo><mi>v</mi><mi>&#7899;</mi><mi>i</mi><mo>&#160;</mo><mi>b</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>d</mi><mo>&#160;</mo><mo>&#8800;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mi>b</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>d</mi><mo>&#160;</mo><mo>&#8800;</mo><mo>&#160;</mo><mn>0</mn></math></p> <p>Gọi gi&aacute; trị chung của c&aacute;c tỉ số đ&atilde; cho l&agrave; k, tức l&agrave;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi>a</mi><mi>b</mi></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi>c</mi><mi>d</mi></mfrac><mo>&#160;</mo></math></p> <p>- T&iacute;nh a theo b v&agrave; k, t&iacute;nh c theo d v&agrave; k.</p> <p>- T&iacute;nh tỉ số <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>a</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>c</mi></mrow><mrow><mi>b</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>d</mi></mrow></mfrac><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mfrac><mrow><mi>a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>c</mi></mrow><mrow><mi>b</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>d</mi></mrow></mfrac><mo>&#160;</mo><mi>t</mi><mi>h</mi><mi>e</mi><mi>o</mi><mo>&#160;</mo><mi>k</mi></math>.</p> <p>- So s&aacute;nh mỗi tỉ số <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>a</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>c</mi></mrow><mrow><mi>b</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>d</mi></mrow></mfrac><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mfrac><mrow><mi>a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>c</mi></mrow><mrow><mi>b</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>d</mi></mrow></mfrac><mo>&#160;</mo></math>với c&aacute;c tỉ số&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>a</mi><mi>b</mi></mfrac><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mfrac><mi>c</mi><mi>d</mi></mfrac></math>.</p> <p>&nbsp;</p> <p><em><span style="text-decoration: underline;"><strong>Hướng dẫn giải</strong></span></em></p> <p>a) Ta c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>6</mn><mn>10</mn></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>3</mn><mn>5</mn></mfrac><mo>;</mo><mo>&#160;</mo><mfrac><mn>9</mn><mn>15</mn></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>3</mn><mn>5</mn></mfrac><mo>.</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>6</mn><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><mn>9</mn></mrow><mrow><mn>10</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>15</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mfrac><mn>15</mn><mn>25</mn></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>15</mn><mo>&#160;</mo><mo>:</mo><mo>&#160;</mo><mn>5</mn></mrow><mrow><mn>25</mn><mo>&#160;</mo><mo>:</mo><mo>&#160;</mo><mn>5</mn></mrow></mfrac><mo>=</mo><mo>&#160;</mo><mfrac><mn>3</mn><mn>5</mn></mfrac><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>6</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>9</mn></mrow><mrow><mn>10</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>15</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mo>-</mo><mn>3</mn></mrow><mrow><mo>-</mo><mn>5</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>3</mn><mn>5</mn></mfrac><mo>;</mo></math></p> <p>Vậy&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>6</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>9</mn><mo>&#160;</mo></mrow><mrow><mn>10</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>15</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>6</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>9</mn></mrow><mrow><mn>10</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>9</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>6</mn><mn>10</mn></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>9</mn><mn>15</mn></mfrac><mo>.</mo></math></p> <p>&nbsp;</p> <p>b)</p> <p>- C&oacute;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi>a</mi><mi>b</mi></mfrac><mo>&#160;</mo><mo>&#8658;</mo><mo>&#160;</mo><mi>a</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>k</mi><mo>.</mo><mi>b</mi></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi>c</mi><mi>d</mi></mfrac><mo>&#160;</mo><mo>&#8658;</mo><mo>&#160;</mo><mi>c</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>k</mi><mo>.</mo><mi>d</mi></math></p> <p>- Ta c&oacute;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>a</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>c</mi></mrow><mrow><mi>b</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>d</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi>k</mi><mo>.</mo><mi>b</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>k</mi><mo>.</mo><mi>d</mi></mrow><mrow><mi>b</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>d</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi>k</mi><mo>.</mo><mo>(</mo><mi>b</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>d</mi><mo>)</mo></mrow><mrow><mi>b</mi><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><mi>d</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>k</mi><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>c</mi></mrow><mrow><mi>b</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>d</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi>k</mi><mo>.</mo><mi>b</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>k</mi><mo>.</mo><mi>d</mi></mrow><mrow><mi>b</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>d</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi>k</mi><mo>.</mo><mo>(</mo><mi>b</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>d</mi><mo>)</mo></mrow><mrow><mi>b</mi><mo>&#160;</mo><mo>-</mo><mo>&#8201;</mo><mi>d</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>k</mi><mo>;</mo></math></p> <p>- Như vậy, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>a</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>c</mi></mrow><mrow><mi>b</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>d</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi>a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>c</mi></mrow><mrow><mi>b</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>d</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi>a</mi><mi>b</mi></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi>c</mi><mi>d</mi></mfrac><mo>&#160;</mo><mfenced><mrow><mo>=</mo><mi>k</mi></mrow></mfenced></math></p> <p>&nbsp;</p> <p>&nbsp;</p> <p>&nbsp;</p> <p>&nbsp;</p> <p>&nbsp;</p> <p>&nbsp;</p> <p>&nbsp;</p>
Xem lời giải bài tập khác cùng bài
<div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn Giải Hoạt động 1 (Trang 55 SGK Toán 7, Bộ Cánh diều, Tập 1)</span></div>
Xem lời giải
<div data-v-a7c68f28=""> <div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn Giải Luyện tập - Vận dụng 1 (Trang 55 SGK Toán 7, Bộ Cánh diều, Tập 1)</span></div> </div>
Xem lời giải
<div data-v-a7c68f28=""> <div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn Giải Luyện tập - Vận dụng 2 (Trang 57 SGK Toán 7, Bộ Cánh diều, Tập 1)</span></div> </div>
Xem lời giải
<div data-v-a7c68f28=""> <div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn Giải Luyện tập - Vận dụng 3 (Trang 57 SGK Toán 7, Bộ Cánh diều, Tập 1)</span></div> </div>
Xem lời giải
<div data-v-a7c68f28=""> <div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn Giải Luyện tập - Vận dụng 4 (Trang 57 SGK Toán 7, Bộ Cánh diều, Tập 1)</span></div> </div>
Xem lời giải
<div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn giải Bài 1 (Trang 58, SGK Toán 7, Bộ Cánh Diều, Tập 1)</span></div>
Xem lời giải
<div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn giải Bài 2 (Trang 58, SGK Toán 7, Bộ Cánh Diều, Tập 1)</span></div>
Xem lời giải
<div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn giải Bài 3 (Trang 58, SGK Toán 7, Bộ Cánh Diều, Tập 1)</span></div>
Xem lời giải
<div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn giải Bài 4 (Trang 58, SGK Toán 7, Bộ Cánh Diều, Tập 1)</span></div>
Xem lời giải
<div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn giải Bài 5 (Trang 58, SGK Toán 7, Bộ Cánh Diều, Tập 1)</span></div>
Xem lời giải
<div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn giải Bài 6 (Trang 58, SGK Toán 7, Bộ Cánh Diều, Tập 1)</span></div>
Xem lời giải
<div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn giải Bài 7 (Trang 58, SGK Toán 7, Bộ Cánh Diều, Tập 1)</span></div>
Xem lời giải