Trang chủ / Giải bài tập / Lớp 10 / Toán / Bài 5. Giá trị lượng giác của một góc từ 0° đến 180°
Bài 5. Giá trị lượng giác của một góc từ 0° đến 180°
Lý thuyết Giá trị lượng giác của một góc từ <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>°</mo></math> đến <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>180</mn><mo>°</mo></math>
<p><strong>1. Gía trị lượng giác của một góc</strong></p>
<p>+) <strong>Nửa đường tròn đơn vị</strong>: nửa đường tròn tâm O, bán kính R = 1 nằm phía trên trục hoành (H.3.2).</p>
<p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/11022023/29-tvvw6n.png" /></p>
<p>+) Với mỗi góc <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mfenced><mrow><msup><mn>0</mn><mo>°</mo></msup><mo>≤</mo><mi>α</mi><mo>≤</mo><msup><mn>180</mn><mo>°</mo></msup></mrow></mfenced></math></strong> có duy nhất điểm <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mfenced><mrow><msub><mi>x</mi><mn>0</mn></msub><mo>;</mo><msub><mi>y</mi><mn>0</mn></msub></mrow></mfenced></math></strong> trên nửa đường tròn đơn vị nói trên để <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>x</mi><mi>O</mi><mi>M</mi></mrow><mo>^</mo></mover><mo>=</mo><mi>α</mi></math></strong>. Khi đó:</p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mi>α</mi></mfenced><mo>=</mo><msub><mi>y</mi><mn>0</mn></msub></math> </strong>là tung độ của M</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mi>α</mi></mfenced><mo>=</mo><msub><mi>x</mi><mn>0</mn></msub></math> là hoành độ của M</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfenced><mi>α</mi></mfenced><mo>=</mo><mfrac><mrow><mi>sin</mi><mfenced><mi>α</mi></mfenced></mrow><mrow><mi>cos</mi><mfenced><mi>α</mi></mfenced></mrow></mfrac><mo>=</mo><mfrac><msub><mi>y</mi><mn>0</mn></msub><msub><mi>x</mi><mn>0</mn></msub></mfrac><mfenced><mrow><mi>α</mi><mo>≠</mo><msup><mn>90</mn><mo>°</mo></msup></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mfenced><mi>α</mi></mfenced><mo>=</mo><mfrac><mrow><mi>cos</mi><mfenced><mi>α</mi></mfenced></mrow><mrow><mi>sin</mi><mfenced><mi>α</mi></mfenced></mrow></mfrac><mo>=</mo><mfrac><msub><mi>x</mi><mn>0</mn></msub><msub><mi>y</mi><mn>0</mn></msub></mfrac><mfenced><mrow><mi>α</mi><mo>≠</mo><msup><mn>0</mn><mo>°</mo></msup><mo>,</mo><mi>α</mi><mo>≠</mo><msup><mn>180</mn><mo>°</mo></msup></mrow></mfenced></math></p>
<p>+) <strong>Bảng giá trị lượng giác của một số góc đặc biệt:</strong></p>
<p> <img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/11022023/30-zEkYAv.png" /></p>
<p>+) Tìm các giá trị lượng giác của góc bằng <strong>máy tính cầm tay</strong>.</p>
<p>Trước tiên, bấm phím SHIFT MODE rồi bấm phím 3 để chọn đơn vị góc là “độ”.</p>
<p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/11022023/31-GnYcoA.png" /></p>
<p><strong>Chú ý:</strong></p>
<p>Khi tìm x biết <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mi>x</mi></mfenced></math>, máy tính chỉ đưa ra giá trị <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≤</mo><msup><mn>90</mn><mo>°</mo></msup></math></strong></p>
<p>Để tính <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mfenced><mi>x</mi></mfenced></math></strong>, ta tính 1: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfenced><mi>x</mi></mfenced></math>.</p>
<p><strong>2. Mối quan hệ giữa các giá trị lượng giác của hai góc bù nhau</strong></p>
<p><strong>* Hai góc bù nhau, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi></math></strong><strong> và <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>180</mn><mo>°</mo></msup><mo>-</mo><mi>α</mi></math>:</strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mrow><msup><mn>180</mn><mo>°</mo></msup><mo>-</mo><mi>α</mi></mrow></mfenced><mo>=</mo><mi>sin</mi><mfenced><mi>α</mi></mfenced></math></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mrow><msup><mn>180</mn><mo>°</mo></msup><mo>-</mo><mi>α</mi></mrow></mfenced><mo>=</mo><mo>-</mo><mi>cos</mi><mfenced><mi>α</mi></mfenced></math></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfenced><mrow><msup><mn>180</mn><mo>°</mo></msup><mo>-</mo><mi>α</mi></mrow></mfenced><mo>=</mo><mo>-</mo><mi>tan</mi><mfenced><mi>α</mi></mfenced><mfenced><mrow><mi>α</mi><mo>≠</mo><msup><mn>90</mn><mo>°</mo></msup></mrow></mfenced></math></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mfenced><mrow><msup><mn>180</mn><mo>°</mo></msup><mo>-</mo><mi>α</mi></mrow></mfenced><mo>=</mo><mo>-</mo><mi>cot</mi><mfenced><mi>α</mi></mfenced><mfenced><mrow><msup><mn>0</mn><mo>°</mo></msup><mo><</mo><mi>α</mi><mo><</mo><msup><mn>180</mn><mo>°</mo></msup></mrow></mfenced></math></p>
<p><strong>* Hai góc phụ nhau, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi></math></strong><strong> và <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>90</mn><mo>°</mo></msup><mo>-</mo><mi>α</mi></math></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mrow><msup><mn>90</mn><mo>°</mo></msup><mo>-</mo><mi>α</mi></mrow></mfenced><mo>=</mo><mi>cos</mi><mfenced><mi>α</mi></mfenced></math></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mrow><msup><mn>90</mn><mo>°</mo></msup><mo>-</mo><mi>α</mi></mrow></mfenced><mo>=</mo><mi>sin</mi><mfenced><mi>α</mi></mfenced></math></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfenced><mrow><msup><mn>90</mn><mo>°</mo></msup><mo>-</mo><mi>α</mi></mrow></mfenced><mo>=</mo><mi>cot</mi><mfenced><mi>α</mi></mfenced><mfenced><mrow><mi>α</mi><mo>≠</mo><msup><mn>90</mn><mo>°</mo></msup><mo>,</mo><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><msup><mn>180</mn><mo>°</mo></msup></mrow></mfenced></math></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mfenced><mrow><msup><mn>90</mn><mo>°</mo></msup><mo>-</mo><mi>α</mi></mrow></mfenced><mo>=</mo><mi>tan</mi><mfenced><mi>α</mi></mfenced><mfenced><mrow><mi>α</mi><mo>≠</mo><msup><mn>90</mn><mo>°</mo></msup><mo>,</mo><msup><mn>0</mn><mo>°</mo></msup><mo><</mo><mi>α</mi><mo><</mo><msup><mn>180</mn><mo>°</mo></msup></mrow></mfenced></math></strong></p>
<p> </p>
<p><span id="MathJax-Element-14-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mtable columnalign="left" rowspacing="4pt" columnspacing="1em"><mtr><mtd><mi>sin</mi><mo>&#x2061;</mo><mrow><mo>(</mo><mrow class="MJX-TeXAtom-ORD"><mrow class="MJX-TeXAtom-ORD"><msup><mrow class="MJX-TeXAtom-ORD"><mn>90</mn></mrow><mi>o</mi></msup></mrow><mo>&#x2212;</mo><mi>&#x03B1;</mi></mrow><mo>)</mo></mrow><mo>=</mo><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03B1;</mi></mtd></mtr><mtr><mtd><mi>cos</mi><mo>&#x2061;</mo><mrow><mo>(</mo><mrow class="MJX-TeXAtom-ORD"><mrow class="MJX-TeXAtom-ORD"><msup><mrow class="MJX-TeXAtom-ORD"><mn>90</mn></mrow><mi>o</mi></msup></mrow><mo>&#x2212;</mo><mi>&#x03B1;</mi></mrow><mo>)</mo></mrow><mo>=</mo><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03B1;</mi></mtd></mtr><mtr><mtd><mi>tan</mi><mo>&#x2061;</mo><mrow><mo>(</mo><mrow class="MJX-TeXAtom-ORD"><mrow class="MJX-TeXAtom-ORD"><msup><mrow class="MJX-TeXAtom-ORD"><mn>90</mn></mrow><mi>o</mi></msup></mrow><mo>&#x2212;</mo><mi>&#x03B1;</mi></mrow><mo>)</mo></mrow><mo>=</mo><mi>cot</mi><mo>&#x2061;</mo><mi>&#x03B1;</mi><mo stretchy="false">(</mo><mi>&#x03B1;</mi><mo>&#x2260;</mo><mrow class="MJX-TeXAtom-ORD"><msup><mn>90</mn><mi>o</mi></msup></mrow><mo>,</mo><mrow class="MJX-TeXAtom-ORD"><msup><mn>0</mn><mi>o</mi></msup></mrow><mo>&lt;</mo><mi>&#x03B1;</mi><mo>&lt;</mo><mrow class="MJX-TeXAtom-ORD"><msup><mn>180</mn><mi>o</mi></msup></mrow><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd><mi>cot</mi><mo>&#x2061;</mo><mrow><mo>(</mo><mrow class="MJX-TeXAtom-ORD"><mrow class="MJX-TeXAtom-ORD"><msup><mrow class="MJX-TeXAtom-ORD"><mn>90</mn></mrow><mi>o</mi></msup></mrow><mo>&#x2212;</mo><mi>&#x03B1;</mi></mrow><mo>)</mo></mrow><mo>=</mo><mi>tan</mi><mo>&#x2061;</mo><mi>&#x03B1;</mi><mo stretchy="false">(</mo><mi>&#x03B1;</mi><mo>&#x2260;</mo><mrow class="MJX-TeXAtom-ORD"><msup><mn>90</mn><mi>o</mi></msup></mrow><mo>,</mo><mrow class="MJX-TeXAtom-ORD"><msup><mn>0</mn><mi>o</mi></msup></mrow><mo>&lt;</mo><mi>&#x03B1;</mi><mo>&lt;</mo><mrow class="MJX-TeXAtom-ORD"><msup><mn>180</mn><mi>o</mi></msup></mrow><mo stretchy="false">)</mo></mtd></mtr></mtable></math>"><span id="MJXc-Node-317" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-318" class="mjx-mrow"><span id="MJXc-Node-319" class="mjx-mtable"><span class="mjx-table"><span id="MJXc-Node-320" class="mjx-mtr"><span id="MJXc-Node-321" class="mjx-mtd"><span id="MJXc-Node-322" class="mjx-mrow"><span id="MJXc-Node-323" class="mjx-mi"></span></span></span></span></span></span></span></span></span></p>