Bài 5. Giá trị lượng giác của một góc từ 0° đến 180°
Lý thuyết Giá trị lượng giác của một góc từ <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#176;</mo></math> đến <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>180</mn><mo>&#176;</mo></math>
<p><strong>1. G&iacute;a trị lượng gi&aacute;c của một g&oacute;c</strong></p> <p>+)&nbsp;<strong>Nửa đường tr&ograve;n đơn vị</strong>: nửa đường tr&ograve;n t&acirc;m O, b&aacute;n k&iacute;nh R = 1 nằm ph&iacute;a tr&ecirc;n trục ho&agrave;nh (H.3.2).</p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/11022023/29-tvvw6n.png" /></p> <p>+) Với mỗi g&oacute;c&nbsp;<strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#945;</mi><mfenced><mrow><msup><mn>0</mn><mo>&#176;</mo></msup><mo>&#8804;</mo><mi>&#945;</mi><mo>&#8804;</mo><msup><mn>180</mn><mo>&#176;</mo></msup></mrow></mfenced></math></strong> c&oacute; duy nhất điểm&nbsp;<strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mfenced><mrow><msub><mi>x</mi><mn>0</mn></msub><mo>;</mo><msub><mi>y</mi><mn>0</mn></msub></mrow></mfenced></math></strong> tr&ecirc;n nửa đường tr&ograve;n đơn vị n&oacute;i tr&ecirc;n để <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>x</mi><mi>O</mi><mi>M</mi></mrow><mo>^</mo></mover><mo>=</mo><mi>&#945;</mi></math></strong>. Khi đ&oacute;:</p> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mi>&#945;</mi></mfenced><mo>=</mo><msub><mi>y</mi><mn>0</mn></msub></math> </strong>l&agrave; tung độ của M</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mi>&#945;</mi></mfenced><mo>=</mo><msub><mi>x</mi><mn>0</mn></msub></math> l&agrave; ho&agrave;nh độ của M</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfenced><mi>&#945;</mi></mfenced><mo>=</mo><mfrac><mrow><mi>sin</mi><mfenced><mi>&#945;</mi></mfenced></mrow><mrow><mi>cos</mi><mfenced><mi>&#945;</mi></mfenced></mrow></mfrac><mo>=</mo><mfrac><msub><mi>y</mi><mn>0</mn></msub><msub><mi>x</mi><mn>0</mn></msub></mfrac><mfenced><mrow><mi>&#945;</mi><mo>&#8800;</mo><msup><mn>90</mn><mo>&#176;</mo></msup></mrow></mfenced></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mfenced><mi>&#945;</mi></mfenced><mo>=</mo><mfrac><mrow><mi>cos</mi><mfenced><mi>&#945;</mi></mfenced></mrow><mrow><mi>sin</mi><mfenced><mi>&#945;</mi></mfenced></mrow></mfrac><mo>=</mo><mfrac><msub><mi>x</mi><mn>0</mn></msub><msub><mi>y</mi><mn>0</mn></msub></mfrac><mfenced><mrow><mi>&#945;</mi><mo>&#8800;</mo><msup><mn>0</mn><mo>&#176;</mo></msup><mo>,</mo><mi>&#945;</mi><mo>&#8800;</mo><msup><mn>180</mn><mo>&#176;</mo></msup></mrow></mfenced></math></p> <p>+)&nbsp;<strong>Bảng gi&aacute; trị lượng gi&aacute;c của một số g&oacute;c đặc biệt:</strong></p> <p>&nbsp;<img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/11022023/30-zEkYAv.png" /></p> <p>+) T&igrave;m c&aacute;c gi&aacute; trị lượng gi&aacute;c của g&oacute;c bằng&nbsp;<strong>m&aacute;y t&iacute;nh cầm tay</strong>.</p> <p>Trước ti&ecirc;n, bấm ph&iacute;m SHIFT MODE rồi bấm ph&iacute;m 3 để chọn đơn vị g&oacute;c l&agrave; &ldquo;độ&rdquo;.</p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/11022023/31-GnYcoA.png" /></p> <p><strong>Ch&uacute; &yacute;:</strong></p> <p>Khi t&igrave;m x biết <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mi>x</mi></mfenced></math>, m&aacute;y t&iacute;nh chỉ đưa ra gi&aacute; trị <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8804;</mo><msup><mn>90</mn><mo>&#176;</mo></msup></math></strong></p> <p>Để t&iacute;nh <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mfenced><mi>x</mi></mfenced></math></strong>, ta t&iacute;nh 1: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfenced><mi>x</mi></mfenced></math>.</p> <p><strong>2. Mối quan hệ giữa c&aacute;c gi&aacute; trị lượng gi&aacute;c của hai g&oacute;c b&ugrave; nhau</strong></p> <p><strong>* Hai g&oacute;c b&ugrave; nhau, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#945;</mi></math></strong><strong> v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>180</mn><mo>&#176;</mo></msup><mo>-</mo><mi>&#945;</mi></math>:</strong></p> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mrow><msup><mn>180</mn><mo>&#176;</mo></msup><mo>-</mo><mi>&#945;</mi></mrow></mfenced><mo>=</mo><mi>sin</mi><mfenced><mi>&#945;</mi></mfenced></math></strong></p> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mrow><msup><mn>180</mn><mo>&#176;</mo></msup><mo>-</mo><mi>&#945;</mi></mrow></mfenced><mo>=</mo><mo>-</mo><mi>cos</mi><mfenced><mi>&#945;</mi></mfenced></math></strong></p> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfenced><mrow><msup><mn>180</mn><mo>&#176;</mo></msup><mo>-</mo><mi>&#945;</mi></mrow></mfenced><mo>=</mo><mo>-</mo><mi>tan</mi><mfenced><mi>&#945;</mi></mfenced><mfenced><mrow><mi>&#945;</mi><mo>&#8800;</mo><msup><mn>90</mn><mo>&#176;</mo></msup></mrow></mfenced></math></strong></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mfenced><mrow><msup><mn>180</mn><mo>&#176;</mo></msup><mo>-</mo><mi>&#945;</mi></mrow></mfenced><mo>=</mo><mo>-</mo><mi>cot</mi><mfenced><mi>&#945;</mi></mfenced><mfenced><mrow><msup><mn>0</mn><mo>&#176;</mo></msup><mo>&#60;</mo><mi>&#945;</mi><mo>&#60;</mo><msup><mn>180</mn><mo>&#176;</mo></msup></mrow></mfenced></math></p> <p><strong>* Hai g&oacute;c phụ nhau, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#945;</mi></math></strong><strong> v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>90</mn><mo>&#176;</mo></msup><mo>-</mo><mi>&#945;</mi></math></strong></p> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mrow><msup><mn>90</mn><mo>&#176;</mo></msup><mo>-</mo><mi>&#945;</mi></mrow></mfenced><mo>=</mo><mi>cos</mi><mfenced><mi>&#945;</mi></mfenced></math></strong></p> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mrow><msup><mn>90</mn><mo>&#176;</mo></msup><mo>-</mo><mi>&#945;</mi></mrow></mfenced><mo>=</mo><mi>sin</mi><mfenced><mi>&#945;</mi></mfenced></math></strong></p> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfenced><mrow><msup><mn>90</mn><mo>&#176;</mo></msup><mo>-</mo><mi>&#945;</mi></mrow></mfenced><mo>=</mo><mi>cot</mi><mfenced><mi>&#945;</mi></mfenced><mfenced><mrow><mi>&#945;</mi><mo>&#8800;</mo><msup><mn>90</mn><mo>&#176;</mo></msup><mo>,</mo><mn>0</mn><mo>&#60;</mo><mi>&#945;</mi><mo>&#60;</mo><msup><mn>180</mn><mo>&#176;</mo></msup></mrow></mfenced></math></strong></p> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mfenced><mrow><msup><mn>90</mn><mo>&#176;</mo></msup><mo>-</mo><mi>&#945;</mi></mrow></mfenced><mo>=</mo><mi>tan</mi><mfenced><mi>&#945;</mi></mfenced><mfenced><mrow><mi>&#945;</mi><mo>&#8800;</mo><msup><mn>90</mn><mo>&#176;</mo></msup><mo>,</mo><msup><mn>0</mn><mo>&#176;</mo></msup><mo>&#60;</mo><mi>&#945;</mi><mo>&#60;</mo><msup><mn>180</mn><mo>&#176;</mo></msup></mrow></mfenced></math></strong></p> <p>&nbsp;</p> <p><span id="MathJax-Element-14-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mtable columnalign=&quot;left&quot; rowspacing=&quot;4pt&quot; columnspacing=&quot;1em&quot;&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;sin&lt;/mi&gt;&lt;mo&gt;&amp;#x2061;&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;90&lt;/mn&gt;&lt;/mrow&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;cos&lt;/mi&gt;&lt;mo&gt;&amp;#x2061;&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;cos&lt;/mi&gt;&lt;mo&gt;&amp;#x2061;&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;90&lt;/mn&gt;&lt;/mrow&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;sin&lt;/mi&gt;&lt;mo&gt;&amp;#x2061;&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;tan&lt;/mi&gt;&lt;mo&gt;&amp;#x2061;&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;90&lt;/mn&gt;&lt;/mrow&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;cot&lt;/mi&gt;&lt;mo&gt;&amp;#x2061;&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;mo&gt;&amp;#x2260;&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mn&gt;90&lt;/mn&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;&amp;lt;&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;mo&gt;&amp;lt;&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mn&gt;180&lt;/mn&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;cot&lt;/mi&gt;&lt;mo&gt;&amp;#x2061;&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;90&lt;/mn&gt;&lt;/mrow&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;tan&lt;/mi&gt;&lt;mo&gt;&amp;#x2061;&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;mo&gt;&amp;#x2260;&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mn&gt;90&lt;/mn&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;&amp;lt;&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;mo&gt;&amp;lt;&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mn&gt;180&lt;/mn&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/math&gt;"><span id="MJXc-Node-317" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-318" class="mjx-mrow"><span id="MJXc-Node-319" class="mjx-mtable"><span class="mjx-table"><span id="MJXc-Node-320" class="mjx-mtr"><span id="MJXc-Node-321" class="mjx-mtd"><span id="MJXc-Node-322" class="mjx-mrow"><span id="MJXc-Node-323" class="mjx-mi"></span></span></span></span></span></span></span></span></span></p>
Xem lời giải bài tập khác cùng bài