Bài 5. Giá trị lượng giác của một góc từ 0° đến 180°
Hướng dẫn giải Bài 3.3 (Trang 37 SGK Toán 10, Bộ Kết nối tri thức, Tập 1)
<p><em><strong>Chứng minh c&aacute;c hệ thức sau:</strong></em></p> <p><em><strong>a) sin<sup>2</sup>&alpha; + cos<sup>2</sup>&alpha; = 1;</strong></em></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">b</mi><mo mathvariant="bold">)</mo><mo mathvariant="bold">&#160;</mo><mn mathvariant="bold">1</mn><mo mathvariant="bold">+</mo><msup><mi mathvariant="bold">tan</mi><mn mathvariant="bold">2</mn></msup><mi mathvariant="bold-italic">&#945;</mi><mo mathvariant="bold">=</mo><mfrac><mn mathvariant="bold">1</mn><mrow><msup><mi mathvariant="bold">cos</mi><mn mathvariant="bold">2</mn></msup><mi mathvariant="bold">&#945;</mi></mrow></mfrac><mo mathvariant="bold">&#160;</mo><mo mathvariant="bold">(</mo><mi mathvariant="bold-italic">&#945;</mi><mo mathvariant="bold">&#8800;</mo><mn mathvariant="bold">90</mn><mo mathvariant="bold">&#176;</mo><mo mathvariant="bold">)</mo><mo mathvariant="bold">;</mo><mspace linebreak="newline"/><mi mathvariant="bold-italic">c</mi><mo mathvariant="bold">)</mo><mo mathvariant="bold">&#160;</mo><mn mathvariant="bold">1</mn><mo mathvariant="bold">+</mo><mi mathvariant="bold-italic">c</mi><mi mathvariant="bold-italic">o</mi><msup><mi mathvariant="bold-italic">t</mi><mn mathvariant="bold">2</mn></msup><mi mathvariant="bold-italic">&#945;</mi><mo mathvariant="bold">=</mo><mfrac><mn mathvariant="bold">1</mn><mrow><msup><mi mathvariant="bold">sin</mi><mn mathvariant="bold">2</mn></msup><mi mathvariant="bold">&#945;</mi></mrow></mfrac><mo mathvariant="bold">&#160;</mo><mo mathvariant="bold">(</mo><mn mathvariant="bold">0</mn><mo mathvariant="bold">&#60;</mo><mi mathvariant="bold-italic">&#945;</mi><mo mathvariant="bold">&#60;</mo><mn mathvariant="bold">180</mn><mo mathvariant="bold">&#176;</mo><mo mathvariant="bold">)</mo><mo mathvariant="bold">.</mo></math></p> <p><span style="text-decoration: underline;"><em><strong>Lời giải:</strong></em></span></p> <p>a)&nbsp;</p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/14062022/16-0ehRAg.png" /></p> <p>Lấy điểm M tr&ecirc;n đường tr&ograve;n lượng gi&aacute;c sao cho&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mover accent=&quot;true&quot;&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;^&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;&amp;#x3B1;&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-57" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-58" class="mjx-mrow"><span id="MJXc-Node-59" class="mjx-mover"><span class="mjx-stack"><span class="mjx-over"><span id="MJXc-Node-64" class="mjx-mo"><span class="mjx-char MJXc-TeX-size4-R">&circ;</span></span></span><span class="mjx-op"><span id="MJXc-Node-60" class="mjx-mrow"><span id="MJXc-Node-61" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span><span id="MJXc-Node-62" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">O</span></span><span id="MJXc-Node-63" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">M</span></span></span></span></span></span><span id="MJXc-Node-65" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-66" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">&alpha;</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi><mi>O</mi><mi>M</mi></mrow><mo>^</mo></mover><mo>=</mo><mi>&alpha;</mi></math></span></span>. Từ M kẻ MH &perp; Ox v&agrave; MK &perp; Oy. Khi đ&oacute;:</p> <p>cos&alpha; = OH, sin&alpha; = OK</p> <p>X&eacute;t tam gi&aacute;c OHK vu&ocirc;ng tại O, ta c&oacute;:</p> <p>OH<sup>2</sup>&nbsp;+ OK<sup>2</sup>&nbsp;= HK<sup>2</sup>&nbsp;(Py &ndash; ta &ndash; go)</p> <p>M&agrave; HK = OM = 1</p> <p>&rArr; OH<sup>2</sup>&nbsp;+ OK<sup>2</sup>&nbsp;= 1</p> <p>Hay cos<sup>2</sup>&alpha; + sin<sup>2</sup>&alpha; = 1(đpcm).</p> <p>b) Ta c&oacute;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><msup><mi>tan</mi><mn>2</mn></msup><mi>&#945;</mi><mo>=</mo><mn>1</mn><mo>+</mo><msup><mrow><mo>(</mo><mfrac><mrow><mi>sin</mi><mi>&#945;</mi></mrow><mrow><mi>cos</mi><mi>&#945;</mi></mrow></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><mrow><msup><mi>sin</mi><mn>2</mn></msup><mi>&#945;</mi></mrow><mrow><msup><mi>cos</mi><mn>2</mn></msup><mi>&#945;</mi></mrow></mfrac><mspace linebreak="newline"/><mo>=</mo><mfrac><mrow><msup><mi>cos</mi><mn>2</mn></msup><mi>&#945;</mi><mo>+</mo><msup><mi>sin</mi><mn>2</mn></msup><mi>&#945;</mi></mrow><mrow><msup><mi>cos</mi><mn>2</mn></msup><mi>&#945;</mi></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><msup><mi>cos</mi><mn>2</mn></msup><mi>&#945;</mi></mrow></mfrac><mo>&#160;</mo><mo>(</mo><mi>&#945;</mi><mo>&#8800;</mo><mn>90</mn><mo>&#176;</mo><mo>)</mo><mo>;</mo></math></p> <p>c) Ta c&oacute;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><mi>c</mi><mi>o</mi><msup><mi>t</mi><mn>2</mn></msup><mi>&#945;</mi><mo>=</mo><mn>1</mn><mo>+</mo><msup><mrow><mo>(</mo><mfrac><mrow><mi>cos</mi><mi>&#945;</mi></mrow><mrow><mi>sin</mi><mi>&#945;</mi></mrow></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><mrow><msup><mi>cos</mi><mn>2</mn></msup><mi>&#945;</mi></mrow><mrow><msup><mi>sin</mi><mn>2</mn></msup><mi>&#945;</mi></mrow></mfrac><mspace linebreak="newline"/><mo>=</mo><mfrac><mrow><msup><mi>cos</mi><mn>2</mn></msup><mi>&#945;</mi><mo>+</mo><msup><mi>sin</mi><mn>2</mn></msup><mi>&#945;</mi></mrow><mrow><msup><mi>sin</mi><mn>2</mn></msup><mi>&#945;</mi></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><msup><mi>sin</mi><mn>2</mn></msup><mi>&#945;</mi></mrow></mfrac><mo>&#160;</mo><mo>(</mo><mn>0</mn><mo>&#60;</mo><mi>&#945;</mi><mo>&#60;</mo><mn>180</mn><mo>&#176;</mo><mo>)</mo><mo>;</mo></math></p>
Xem lời giải bài tập khác cùng bài