Bài 2: Giải tam giác. Tính diện tích tam giác
<span data-v-a7c68f28="">Hướng dẫn Giải Hoạt động 5 (Trang 74 SGK Toán 10, Bộ Cánh diều, Tập 1)</span>
<p><strong>Hoạt động 5 (Trang 74 SGK To&aacute;n 10, Bộ C&aacute;nh diều, Tập 1)</strong></p> <p>Cho tam gi&aacute;c ABC c&oacute; <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&nbsp;</mo><mi>B</mi><mi>C</mi><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mi>a</mi><mo>,</mo><mo>&nbsp;</mo><mi>C</mi><mi>A</mi><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mi>b</mi><mo>,</mo><mo>&nbsp;</mo><mi>A</mi><mi>B</mi><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mi>c</mi><mo>&nbsp;</mo></math>v&agrave; diện t&iacute;ch S (H&igrave;nh 24).</p> <p>a) Từ định l&iacute; c&ocirc;sin, chứng tỏ rằng:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo>&nbsp;</mo><mi>A</mi><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mfrac><mn>2</mn><mrow><mi>b</mi><mi>c</mi></mrow></mfrac><msqrt><mi>p</mi><mo>(</mo><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mi>a</mi><mo>)</mo><mo>(</mo><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mi>b</mi><mo>)</mo><mo>(</mo><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mi>c</mi><mo>)</mo></msqrt></math>, ở đ&oacute;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mfrac><mrow><mi>a</mi><mo>&nbsp;</mo><mo>+</mo><mo>&thinsp;</mo><mi>b</mi><mo>&nbsp;</mo><mo>+</mo><mo>&thinsp;</mo><mi>c</mi></mrow><mn>2</mn></mfrac><mo>.</mo></math></p> <p>b) Bằng c&aacute;ch sử dụng c&ocirc;ng thức&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>b</mi><mi>c</mi><mi>sin</mi><mo>&nbsp;</mo><mi>A</mi><mo>,</mo></math> h&atilde;y chứng tỏ rằng:&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><msqrt><mi>p</mi><mo>(</mo><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mi>a</mi><mo>)</mo><mo>(</mo><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mi>b</mi><mo>)</mo><mo>(</mo><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mi>c</mi><mo>)</mo></msqrt></math></p> <p>&nbsp;</p> <p><em><span style="text-decoration: underline;"><strong>Hướng dẫn giải</strong></span></em></p> <p>a) &Aacute;p dụng định l&iacute; cosin trong tam gi&aacute;c ABC ta c&oacute;:&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mrow><mn>2</mn><mo>&nbsp;</mo></mrow></msup><mo>=</mo><mo>&nbsp;</mo><msup><mi>b</mi><mn>2</mn></msup><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><msup><mi>c</mi><mn>2</mn></msup><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mn>2</mn><mi>b</mi><mi>c</mi><mo>.</mo><mi>cos</mi><mo>&nbsp;</mo><mi>A</mi><mo>&nbsp;</mo><mo>&rArr;</mo><mo>&nbsp;</mo><mi>cos</mi><mo>&nbsp;</mo><mi>A</mi><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mfrac><mrow><msup><mi>b</mi><mn>2</mn></msup><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><msup><mi>c</mi><mn>2</mn></msup><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><mi>b</mi><mi>c</mi></mrow></mfrac></math></p> <p>m&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo>&nbsp;</mo><mi>A</mi><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><msqrt><mn>1</mn><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><msup><mi>cos</mi><mn>2</mn></msup><mo>&nbsp;</mo><mi>A</mi></msqrt></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&rArr;</mo><mo>&nbsp;</mo><mi>sin</mi><mo>&nbsp;</mo><mi>A</mi><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><msqrt><mn>1</mn><mo>&nbsp;</mo><mo>-</mo><msup><mfenced><mrow><mo>&nbsp;</mo><mfrac><mrow><msup><mi>b</mi><mn>2</mn></msup><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><msup><mi>c</mi><mn>2</mn></msup><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><mi>b</mi><mi>c</mi></mrow></mfrac></mrow></mfenced><mn>2</mn></msup></msqrt><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><msqrt><mfrac><mrow><msup><mrow><mo>(</mo><mn>2</mn><mi>b</mi><mi>c</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><msup><mfenced><mrow><msup><mi>b</mi><mn>2</mn></msup><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><msup><mi>c</mi><mn>2</mn></msup><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><msup><mi>a</mi><mn>2</mn></msup></mrow></mfenced><mn>2</mn></msup></mrow><msup><mfenced><mrow><mn>2</mn><mi>b</mi><mi>c</mi></mrow></mfenced><mn>2</mn></msup></mfrac></msqrt></math></p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&nbsp;</mo><mfrac><mrow><mo>(</mo><mn>2</mn><mi>b</mi><mi>c</mi><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><msup><mi>b</mi><mn>2</mn></msup><mo>&nbsp;</mo><mo>+</mo><mo>&thinsp;</mo><msup><mi>c</mi><mn>2</mn></msup><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><msup><mi>a</mi><mn>2</mn></msup><mo>)</mo><mo>(</mo><mn>2</mn><mi>b</mi><mi>c</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><msup><mi>b</mi><mn>2</mn></msup><mo>&nbsp;</mo><mo>-</mo><mo>&thinsp;</mo><msup><mi>c</mi><mn>2</mn></msup><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><msup><mi>a</mi><mn>2</mn></msup><mo>)</mo></mrow><msup><mrow><mo>(</mo><mn>2</mn><mi>b</mi><mi>c</mi><mo>)</mo></mrow><mn>2</mn></msup></mfrac></math></p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&nbsp;</mo><mfrac><msqrt><mo>(</mo><mi>a</mi><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><mi>b</mi><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><mi>c</mi><mo>)</mo><mo>(</mo><mi>a</mi><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><mi>b</mi><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><mi>c</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mn>2</mn><mi>a</mi><mo>)</mo><mo>(</mo><mi>a</mi><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><mi>b</mi><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><mi>c</mi><mo>&nbsp;</mo><mo>-</mo><mi>c</mi><mo>)</mo><mo>(</mo><mi>a</mi><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><mi>b</mi><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><mi>c</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mn>2</mn><mi>b</mi><mo>)</mo></msqrt><mrow><mn>2</mn><mi>b</mi><mi>c</mi></mrow></mfrac></math></p> <p>Lại c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mfrac><mrow><mi>a</mi><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><mi>b</mi><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><mi>c</mi></mrow><mn>2</mn></mfrac><mo>&nbsp;</mo><mo>&rArr;</mo><mo>&nbsp;</mo><mi>a</mi><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><mi>b</mi><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><mi>c</mi><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>2</mn><mi>p</mi></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&rArr;</mo><mo>&nbsp;</mo><mi>sin</mi><mo>&nbsp;</mo><mi>A</mi><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mfrac><msqrt><mn>2</mn><mi>p</mi><mo>(</mo><mn>2</mn><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mn>2</mn><mi>a</mi><mo>)</mo><mo>(</mo><mn>2</mn><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mn>2</mn><mi>b</mi><mo>)</mo><mo>(</mo><mn>2</mn><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mn>2</mn><mi>c</mi><mo>)</mo></msqrt><mrow><mn>2</mn><mi>b</mi><mi>c</mi></mrow></mfrac><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mfrac><msqrt><mn>16</mn><mi>p</mi><mo>(</mo><mi>p</mi><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mi>a</mi><mo>)</mo><mo>(</mo><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mi>b</mi><mo>)</mo><mo>(</mo><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mi>c</mi><mo>)</mo></msqrt><mrow><mn>2</mn><mi>b</mi><mi>c</mi></mrow></mfrac></math></p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&nbsp;</mo><mfrac><mn>2</mn><mrow><mi>b</mi><mi>c</mi></mrow></mfrac><msqrt><mi>p</mi><mo>(</mo><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mi>a</mi><mo>)</mo><mo>(</mo><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mi>b</mi><mo>)</mo><mo>(</mo><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mi>c</mi><mo>)</mo></msqrt></math></p> <p>&nbsp;</p> <p>b) Diện t&iacute;ch tam gi&aacute;c ABC l&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>b</mi><mi>c</mi><mi>sin</mi><mo>&#160;</mo><mi>A</mi></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&rArr;</mo><mo>&nbsp;</mo><mi>S</mi><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>b</mi><mi>c</mi><mo>&nbsp;</mo><mo>.</mo><mo>&nbsp;</mo><mi>sin</mi><mo>&nbsp;</mo><mi>A</mi><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>b</mi><mi>c</mi><mo>&nbsp;</mo><mo>.</mo><mo>&nbsp;</mo><mfrac><mn>2</mn><mrow><mi>b</mi><mi>c</mi></mrow></mfrac><msqrt><mi>p</mi><mo>(</mo><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mi>a</mi><mo>)</mo><mo>(</mo><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mi>b</mi><mo>)</mo><mo>(</mo><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mi>c</mi><mo>)</mo></msqrt></math></p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&nbsp;</mo><msqrt><mi>p</mi><mo>(</mo><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mi>a</mi><mo>)</mo><mo>(</mo><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mi>b</mi><mo>)</mo><mo>(</mo><mi>p</mi><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mi>c</mi><mo>)</mo></msqrt></math></p> <p>&nbsp;</p> <p>&nbsp;</p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;</p> <p>&nbsp;</p> <p><span id="MathJax-Element-14-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mi&gt;cos&lt;/mi&gt;&lt;mo&gt;&amp;#x2061;&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-269" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-270" class="mjx-mrow"><span id="MJXc-Node-271" class="mjx-texatom"><span id="MJXc-Node-272" class="mjx-mrow"><span id="MJXc-Node-273" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-274" class="mjx-mi"></span></span></span></span></span></span></span></span></p>
Xem lời giải bài tập khác cùng bài