Bài 2: Giải tam giác. Tính diện tích tam giác
<span data-v-a7c68f28="">Hướng dẫn Giải Hoạt động 2, 3, 4 (Trang 73 SGK Toán 10, Bộ Cánh diều, Tập 1)</span>
<p><strong>Hoạt động 2 (Trang 73 SGK To&aacute;n 10, Bộ C&aacute;nh diều, Tập 1)</strong></p> <p>Cho tam gi&aacute;c ABC c&oacute; AB = c, AC = b, BC = a. Viết c&ocirc;ng thức t&iacute;nh cos A theo a, b, c.</p> <p>&nbsp;</p> <p><em><span style="text-decoration: underline;"><strong>Hướng dẫn giải</strong></span></em></p> <p>&Aacute;p dụng hệ quả của định l&iacute; c&ocirc;sin trong tam gi&aacute;c ABC ta c&oacute;:&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo>&#160;</mo><mi>A</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi>A</mi><msup><mi>B</mi><mrow><mn>2</mn><mo>&#160;</mo></mrow></msup><mo>+</mo><mo>&#160;</mo><mi>A</mi><msup><mi>C</mi><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>B</mi><msup><mi>C</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><mo>&#160;</mo><mo>.</mo><mo>&#160;</mo><mi>A</mi><mi>C</mi><mo>&#160;</mo><mo>.</mo><mo>&#160;</mo><mi>A</mi><mi>B</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msup><mi>b</mi><mrow><mn>2</mn><mo>&#160;</mo></mrow></msup><mo>-</mo><mo>&#160;</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><mi>b</mi><mi>c</mi></mrow></mfrac></math></p> <p>Vậy&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo>&#160;</mo><mi>A</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msup><mi>b</mi><mrow><mn>2</mn><mo>&#160;</mo></mrow></msup><mo>-</mo><mo>&#160;</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><mi>b</mi><mi>c</mi></mrow></mfrac></math>.</p> <p>&nbsp;</p> <p><strong>Hoạt động 3 (Trang 73 SGK To&aacute;n 10, Bộ C&aacute;nh diều, Tập 1)</strong></p> <p><strong>&nbsp;</strong>Cho tam gi&aacute;c ABC c&oacute; BC = a,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>B</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>&#945;</mi><mo>,</mo><mo>&#160;</mo><mover><mi>C</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>&#946;</mi></math>. Viết c&ocirc;ng thức t&iacute;nh AB v&agrave; AC theo a,&nbsp;&alpha;, &beta;.</p> <p>&nbsp;</p> <p><em><span style="text-decoration: underline;"><strong>Hướng dẫn giải</strong></span></em></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8710;</mo><mi>A</mi><mi>B</mi><mi>C</mi><mo>:</mo><mo>&#160;</mo><mover><mi>A</mi><mo>^</mo></mover><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mover><mi>B</mi><mo>^</mo></mover><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mover><mi>C</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>180</mn><mo>&#176;</mo><mo>&#160;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mo>&#160;</mo><mover><mi>A</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>180</mn><mo>&#176;</mo><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mo>(</mo><mover><mi>B</mi><mo>^</mo></mover><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mover><mi>C</mi><mo>^</mo></mover><mo>)</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>180</mn><mo>&#176;</mo><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mo>(</mo><mi>&#945;</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>&#946;</mi><mo>)</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mo>&#160;</mo><mi>sin</mi><mi>A</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>sin</mi><mo>(</mo><mn>180</mn><mo>&#176;</mo><mo>&#160;</mo><mo>&#8211;</mo><mo>&#160;</mo><mo>(</mo><mi>&#945;</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>&#946;</mi><mo>)</mo><mo>)</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>sin</mi><mo>(</mo><mi>&#945;</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>&#946;</mi><mo>)</mo><mo>.</mo></math></p> <p>&nbsp;</p> <p>&Aacute;p dụng định l&iacute; sin trong tam gi&aacute;c ABC ta c&oacute;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>B</mi><mi>C</mi></mrow><mrow><mi>sin</mi><mo>&#160;</mo><mi>A</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi>A</mi><mi>C</mi></mrow><mrow><mi>sin</mi><mo>&#160;</mo><mi>B</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi>A</mi><mi>B</mi></mrow><mrow><mi>sin</mi><mo>&#160;</mo><mi>C</mi></mrow></mfrac></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mo>&#160;</mo><mi>A</mi><mi>B</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi>B</mi><mi>C</mi><mo>.</mo><mi>sin</mi><mo>&#160;</mo><mi>C</mi></mrow><mrow><mi>sin</mi><mo>&#160;</mo><mi>A</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi>a</mi><mo>.</mo><mi>sin</mi><mo>&#160;</mo><mi>&#946;</mi></mrow><mrow><mi>sin</mi><mo>(</mo><mi>&#945;</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>&#946;</mi><mo>)</mo></mrow></mfrac><mo>&#160;</mo></math>v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mo>&#160;</mo><mi>A</mi><mi>C</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi>B</mi><mi>C</mi><mo>.</mo><mi>sin</mi><mo>&#160;</mo><mi>B</mi></mrow><mrow><mi>sin</mi><mo>&#160;</mo><mi>A</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi>a</mi><mo>.</mo><mi>sin</mi><mo>&#160;</mo><mi>&#945;</mi></mrow><mrow><mi>sin</mi><mo>(</mo><mi>&#945;</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>&#946;</mi><mo>)</mo></mrow></mfrac><mo>&#160;</mo></math></p> <p>&nbsp;</p> <p><strong>Hoạt động 4 (Trang 73 SGK To&aacute;n 10, Bộ C&aacute;nh diều, Tập 1)</strong></p> <p>Cho tam gi&aacute;c ABC c&oacute; AB = c, AC = b, BC = a. Kẻ đường cao BH.</p> <p>a) T&iacute;nh BH theo c v&agrave; sin A.&nbsp;</p> <p>b) T&iacute;nh diện t&iacute;ch S của tam gi&aacute;c ABC theo b, c, v&agrave; sin A.</p> <p>&nbsp;</p> <p><em><span style="text-decoration: underline;"><strong>Hướng dẫn giải</strong></span></em></p> <p>Đ&atilde; tr&igrave;nh b&agrave;y trong SGK.</p>
Xem lời giải bài tập khác cùng bài