Bài 2: Giải tam giác. Tính diện tích tam giác
Hướng dẫn giải Bài 2 (Trang 77, SGK Toán 10, Bộ Cánh Diều mới nhất, Tập 1)
<p><strong>B&agrave;i 2 (Trang 77, SGK To&aacute;n 10, Bộ C&aacute;nh diều, Tập 1)</strong></p> <p>Cho tam gi&aacute;c ABC c&oacute; AB = 5, BC = 7, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>A</mi><mo>^</mo></mover><mo>=</mo><mn>120</mn><mo>&deg;</mo></math>. T&iacute;nh độ d&agrave;i cạnh AC.</p> <p>&nbsp;</p> <p><span style="text-decoration: underline;"><em><strong>Hướng dẫn giải:</strong></em></span></p> <p><strong>C&aacute;ch 1</strong>: &aacute;p dụng định l&iacute; sin v&agrave; c&ocirc;sin<strong>&nbsp;</strong></p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/21062022/bai-2-trand-77-toan-lop-10-tap-1-1-XbjoH0.png" /></p> <p>&Aacute;p dụng định l&iacute; sin trong tam gi&aacute;c ABC ta c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>A</mi><mi>B</mi></mrow><mrow><mi>sin</mi><mfenced><mi>C </mi></mfenced></mrow></mfrac><mo>= </mo><mfrac><mrow><mi>B</mi><mi>C</mi></mrow><mrow><mi>sin</mi><mfenced><mi>A</mi></mfenced></mrow></mfrac></math><span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;sin&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;sin&lt;/mi&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/math&gt;"><span id="MJXc-Node-9" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-10" class="mjx-mrow"><span id="MJXc-Node-11" class="mjx-mfrac"><span class="mjx-box MJXc-stacked"><span class="mjx-numerator"><span id="MJXc-Node-12" class="mjx-mrow"><span id="MJXc-Node-13" class="mjx-mi"></span></span></span></span></span></span></span></span></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&rArr; </mo><mi>sin</mi><mfenced><mi>C </mi></mfenced><mo>= </mo><mfrac><mrow><mi>A</mi><mi>B</mi><mo>.</mo><mi>sin</mi><mfenced><mi>A</mi></mfenced></mrow><mrow><mi>B</mi><mi>C </mi></mrow></mfrac><mo>= </mo><mfrac><mrow><mn>5</mn><mo>.</mo><mi>sin</mi><mfenced><mrow><mn>120</mn><mo>&deg;</mo></mrow></mfenced></mrow><mn>7 </mn></mfrac><mo>= </mo><mfrac><mrow><mn>5</mn><msqrt><mn>3</mn></msqrt></mrow><mn>14</mn></mfrac></math></p> <p>Do đ&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>C</mi><mo>^</mo></mover></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mo>&nbsp;</mo></mover><mo>&asymp; </mo><mn>38</mn><mo>&deg;</mo></math></p> <p>Lại c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi></mi></mover></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>A</mi><mo>^</mo></mover><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><mover><mi>B</mi><mo>^</mo></mover><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><mover><mi>C</mi><mo>^</mo></mover><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>180</mn><mo>&deg;</mo></math><mo> </mo>(định l&iacute; tổng ba g&oacute;c trong tam gi&aacute;c)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&rArr; </mo><mover><mi></mi></mover></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>B</mi><mo>^</mo></mover><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>180</mn><mo>&deg;</mo><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mover><mi>A</mi><mo>^</mo></mover><mo>&nbsp;</mo><mo>+</mo><mo>&thinsp;</mo><mover><mi>C</mi><mo>^</mo></mover><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>180</mn><mo>&deg;</mo><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mn>120</mn><mo>&deg;</mo><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><mn>38</mn><mo>&deg;</mo><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>22</mn><mo>&deg;</mo></math><mo></mo></p> <p>&Aacute;p dụng định l&iacute; c&ocirc;sin trong tam gi&aacute;c ABC ta c&oacute;:&nbsp;</p> <p>AC<sup>2</sup>&nbsp;= AB<sup>2</sup>&nbsp;+ BC<sup>2</sup>&nbsp;&ndash; 2 . AB . AC . sin B = 5<sup>2</sup>&nbsp;+ 7<sup>2</sup>&nbsp;&ndash; 2 . 5 . 7 . cos 22&deg; &asymp; 9</p> <p>&rArr;&nbsp;AC &asymp; 3.</p> <p>&nbsp;</p> <p><strong>C&aacute;ch 2: </strong>Dựng th&ecirc;m đường cao v&agrave; sử dụng định l&iacute; Pythagore.&nbsp;</p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/21062022/bai-2-trand-77-toan-lop-10-tap-1-2-tFXFYq.png" /></p> <p>Dựng đường cao CH của tam gi&aacute;c ABC.&nbsp;</p> <p>Đặt AH = x.&nbsp;</p> <p>Ta c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi></mi></mrow></mover></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>&nbsp;</mo><mo>+</mo><mo>&thinsp;</mo><mover><mrow><mi>C</mi><mi>A</mi><mi>H</mi></mrow><mo>^</mo></mover><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>180</mn><mo>&deg;</mo></math><mo> </mo>( kề b&ugrave;)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&rArr; </mo><mover><mrow><mi>C</mi><mi>A</mi><mi>H</mi></mrow><mo>^</mo></mover><mo>=</mo><mn>180</mn><mo>&deg;</mo><mo>-</mo><mover><mrow><mi>B</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><mn>180</mn><mo>&deg;</mo><mo>-</mo><mn>120</mn><mo>&deg;</mo><mo>=</mo><mn>60</mn><mo>&deg;</mo></math></p> <p>Tam gi&aacute;c ACH vu&ocirc;ng tại H n&ecirc;n&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mover><mrow><mi>C</mi><mi>A</mi><mi>H</mi></mrow><mo>^</mo></mover></mfenced><mo>=</mo><mfrac><mrow><mi>A</mi><mi>H</mi></mrow><mrow><mi>C</mi><mi>A</mi></mrow></mfrac><mo>&rArr;</mo><mi>C</mi><mi>A</mi><mo>=</mo><mfrac><mrow><mi>A</mi><mi>H</mi></mrow><mrow><mi>cos</mi><mfenced><mover><mrow><mi>C</mi><mi>A</mi><mi>H</mi></mrow><mo>^</mo></mover></mfenced></mrow></mfrac><mo>=</mo><mfrac><mi>x</mi><mrow><mi>cos</mi><mfenced><mrow><mn>60</mn><mo>&deg;</mo></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mi>x</mi><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle></mfrac><mo>=</mo><mn>2</mn><mi>x</mi></math></p> <p>&Aacute;p dụng định l&iacute; Pythagore ta t&iacute;nh được:<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&nbsp;</mo><mi>C</mi><mi>H</mi><mo>=</mo><mi>x</mi><msqrt><mn>3</mn></msqrt></math></p> <p>V&agrave; BC<sup>2</sup>&nbsp;= BH<sup>2</sup><sub>&nbsp;</sub>+ CH<sup>2</sup>&nbsp;= (BA + AH)<sup>2</sup>&nbsp;+ CH<sup>2</sup>&nbsp;</p> <p>Thay số: 7<sup>2</sup><sub>&nbsp;</sub>= (5 + x)<sup>2</sup>&nbsp;+ 3x<sup>2</sup>&nbsp;(1)</p> <p>Giải phương tr&igrave;nh (1) ta được x = 1,5 l&agrave; gi&aacute; trị thỏa m&atilde;n.&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&rArr;</mo></math>AC = 2x = 2 . 1,5 = 3</p>
Xem lời giải bài tập khác cùng bài