Bài 11 (Trang 102 SGK Toán 10, Bộ Cánh diều, Tập 2)
Một chiếc đèn có mặt cắt ngang là hình parabol (Hình 63). Hình parabol có chiều rộng giữa hai mép vành là AB = 40 cm và chiều sâu h = 30 cm (h bằng khoảng cách từ O đến AB). Bóng đèn nằm ở tiêu điểm S. Viết phương trình chính tắc của parabol đó.
Hướng dẫn giải
Gọi phương trình chính tắc của parabol là:
Vì AB = 40 và Ox là đường trung trực của đoạn AB nên khoảng cách từ điểm A đến trục Ox là .
Chiều sâu h bằng khoảng cách từ O đến AB và cũng chính bằng khoảng cách từ điểm A đến trục Oy và bằng 30.
Do đó, parabol đi qua điểm A có hoành độ là 30 (khoảng cách từ A đến trục Oy) và tung độ là 20 (khoảng cách từ A đến trục Ox) hay A(30; 20).
Thay tọa độ điểm A vào phương trình chính tắc của parabol, ta được:
202 = 2p . 30 ⇔ 60p = 400 ⇔ (thỏa mãn p > 0).
Vậy phương trình chính tắc của parabol cần lập là: