Bài 4: Liên hệ giữa phép chia và phép khai phương
Hướng dẫn giải Bài 34 (Trang 19 SGK Toán 9, Tập 1)
<p><strong>B&agrave;i 34 (Trang 19 SGK To&aacute;n 9, Tập 1):</strong></p> <p>R&uacute;t gọn c&aacute;c biểu thức sau:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">a</mi><mo>)</mo><mo>&#160;</mo><msup><mi>ab</mi><mn>2</mn></msup><mo>.</mo><msqrt><mfrac><mn>3</mn><mrow><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup><msup><mi mathvariant="normal">b</mi><mn>4</mn></msup></mrow></mfrac></msqrt><mo>&#160;</mo><mi>v&#7899;i</mi><mo>&#160;</mo><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>&#8800;</mo><mn>0</mn><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">b</mi><mo>)</mo><mo>&#160;</mo><msqrt><mfrac><mrow><mn>27</mn><msup><mfenced><mrow><mi mathvariant="normal">a</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></mrow><mn>48</mn></mfrac></msqrt><mo>&#160;</mo><mi>v&#7899;i</mi><mo>&#160;</mo><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>3</mn><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">c</mi><mo>)</mo><mo>&#160;</mo><msqrt><mfrac><mrow><mn>9</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>12</mn><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>4</mn><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup></mrow><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mfrac></msqrt><mo>&#160;</mo><mi>v&#7899;i</mi><mo>&#160;</mo><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>&#8805;</mo><mo>&#160;</mo><mo>-</mo><mn>1</mn><mo>,</mo><mn>5</mn><mo>&#160;</mo><mi>v&#224;</mi><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>0</mn><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">d</mi><mo>)</mo><mo>&#160;</mo><mfenced><mrow><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi></mrow></mfenced><mo>.</mo><msqrt><mfrac><mi>ab</mi><msup><mfenced><mrow><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi></mrow></mfenced><mn>2</mn></msup></mfrac></msqrt><mo>&#160;</mo><mi>v&#7899;i</mi><mo>&#160;</mo><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>0</mn><mo>.</mo></math></p> <p>&nbsp;</p> <p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span></strong></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">a</mi><mo>)</mo><mo>&#160;</mo><msup><mi>ab</mi><mn>2</mn></msup><mo>.</mo><msqrt><mfrac><mn>3</mn><mrow><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup><msup><mi mathvariant="normal">b</mi><mn>4</mn></msup></mrow></mfrac></msqrt><mo>&#160;</mo><mi>v&#7899;i</mi><mo>&#160;</mo><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>&#8800;</mo><mn>0</mn></math></p> <p>Ta c&oacute;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ab</mi><mn>2</mn></msup><mo>.</mo><msqrt><mfrac><mn>3</mn><mrow><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup><msup><mi mathvariant="normal">b</mi><mn>4</mn></msup></mrow></mfrac></msqrt><mo>&#160;</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>a</mi><msup><mi>b</mi><mn>2</mn></msup><mo>.</mo><mfrac><msqrt><mn>3</mn></msqrt><msqrt><msup><mi>a</mi><mn>2</mn></msup><msup><mi>b</mi><mn>4</mn></msup></msqrt></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>a</mi><msup><mi>b</mi><mn>2</mn></msup><mo>.</mo><mfrac><msqrt><mn>3</mn></msqrt><msqrt><msup><mi>a</mi><mn>2</mn></msup><mo>.</mo><msqrt><msup><mi>b</mi><mn>4</mn></msup></msqrt></msqrt></mfrac><mspace linebreak="newline"/><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>a</mi><msup><mi>b</mi><mn>2</mn></msup><mo>.</mo><mfrac><msqrt><mn>3</mn></msqrt><mrow><mfenced open="|" close="|"><mi>a</mi></mfenced><mo>.</mo><mfenced open="|" close="|"><msup><mi>b</mi><mn>2</mn></msup></mfenced></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>a</mi><msup><mi>b</mi><mn>2</mn></msup><mo>.</mo><mfrac><msqrt><mn>3</mn></msqrt><mrow><mo>-</mo><mi>a</mi><msup><mi>b</mi><mn>2</mn></msup></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>&#160;</mo><mo>(</mo><mi>V</mi><mi>&#236;</mi><mo>&#160;</mo><mi>a</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mi>b</mi><mo>&#8800;</mo><mn>0</mn><mo>&#160;</mo><mi>n</mi><mi>&#234;</mi><mi>n</mi><mo>&#160;</mo><msup><mi>b</mi><mn>2</mn></msup><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>)</mo><mo>&#160;</mo><mo>&#8658;</mo><mfenced open="|" close="|"><msup><mi>b</mi><mn>2</mn></msup></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msup><mi>b</mi><mn>2</mn></msup><mo>)</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">b</mi><mo>)</mo><mo>&#160;</mo><msqrt><mfrac><mrow><mn>27</mn><msup><mfenced><mrow><mi mathvariant="normal">a</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></mrow><mn>48</mn></mfrac></msqrt><mo>&#160;</mo><mi>v&#7899;i</mi><mo>&#160;</mo><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>3</mn></math></p> <p>Ta c&oacute;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mn>27</mn><msup><mfenced><mrow><mi mathvariant="normal">a</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></mrow><mn>48</mn></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mfrac><mn>27</mn><mn>48</mn></mfrac><mo>.</mo><msup><mfenced><mrow><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mfrac><mn>27</mn><mn>48</mn></mfrac></msqrt><mo>.</mo><msqrt><msup><mfenced><mrow><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></msqrt><mspace linebreak="newline"/><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mfrac><mrow><mn>9</mn><mo>.</mo><mn>3</mn></mrow><mrow><mn>16</mn><mo>.</mo><mn>3</mn></mrow></mfrac></msqrt><mo>.</mo><msqrt><msup><mfenced><mrow><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mfrac><mn>9</mn><mn>16</mn></mfrac></msqrt><mo>.</mo><msqrt><msup><mfenced><mrow><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>&#160;</mo><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></msqrt><mspace linebreak="newline"/><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>3</mn><mn>4</mn></mfrac><mo>.</mo><msqrt><msup><mfenced><mrow><mi mathvariant="normal">a</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>3</mn><mn>4</mn></mfrac><mo>.</mo><mfenced open="|" close="|"><mrow><mi mathvariant="normal">a</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>3</mn><mn>4</mn></mfrac><mfenced><mrow><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn></mrow></mfenced><mspace linebreak="newline"/><mo mathvariant="italic">(</mo><mi>V</mi><mi>&#236;</mi><mo mathvariant="italic">&#160;</mo><mi>a</mi><mo mathvariant="italic">&#160;</mo><mo mathvariant="italic">&#62;</mo><mo mathvariant="italic">&#160;</mo><mn mathvariant="italic">3</mn><mo mathvariant="italic">&#160;</mo><mi>n</mi><mi>&#234;</mi><mi>n</mi><mo mathvariant="italic">&#160;</mo><mi>a</mi><mo mathvariant="italic">&#160;</mo><mo mathvariant="italic">-</mo><mo mathvariant="italic">&#160;</mo><mn mathvariant="italic">3</mn><mo mathvariant="italic">&#160;</mo><mo mathvariant="italic">&#62;</mo><mo mathvariant="italic">&#160;</mo><mn mathvariant="italic">0</mn><mo mathvariant="italic">&#160;</mo><mo mathvariant="italic">&#8658;</mo><mrow><mo mathvariant="italic">|</mo><mi mathvariant="italic">a</mi><mo mathvariant="italic">&#160;</mo><mo mathvariant="italic">-</mo><mo mathvariant="italic">&#160;</mo><mn mathvariant="italic">3</mn><mo mathvariant="italic">|</mo></mrow><mo mathvariant="italic">&#160;</mo><mo mathvariant="italic">=</mo><mo mathvariant="italic">&#160;</mo><mi>a</mi><mo mathvariant="italic">&#160;</mo><mo mathvariant="italic">-</mo><mo mathvariant="italic">&#160;</mo><mn mathvariant="italic">3</mn><mo mathvariant="italic">)</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">c</mi><mo>)</mo><mo>&#160;</mo><msqrt><mfrac><mrow><mn>9</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>12</mn><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>4</mn><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup></mrow><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mfrac></msqrt><mo>&#160;</mo><mi>v&#7899;i</mi><mo>&#160;</mo><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>&#8805;</mo><mo>&#160;</mo><mo>-</mo><mn>1</mn><mo>,</mo><mn>5</mn><mo>&#160;</mo><mi>v&#224;</mi><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>0</mn><mo>;</mo></math></p> <p>Ta c&oacute;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mn>9</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>12</mn><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>4</mn><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup></mrow><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mfrac><mrow><msup><mn>3</mn><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo>.</mo><mn>2</mn><mi>a</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msup><mn>2</mn><mn>2</mn></msup><mo>.</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><msup><mi>b</mi><mn>2</mn></msup></mfrac></msqrt><mspace linebreak="newline"/><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mfrac><mrow><msup><mn>3</mn><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo>.</mo><mn>2</mn><mi>a</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msup><mfenced><mrow><mn>2</mn><mi>a</mi></mrow></mfenced><mn>2</mn></msup></mrow><msup><mi>b</mi><mn>2</mn></msup></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mfrac><msup><mfenced><mrow><mn>3</mn><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><mn>2</mn><mi>a</mi></mrow></mfenced><mn>2</mn></msup><msup><mi>b</mi><mn>2</mn></msup></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mfenced open="|" close="|"><mrow><mn>3</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><mi>a</mi></mrow></mfenced><mfenced open="|" close="|"><mi>b</mi></mfenced></mfrac></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V&#236;</mi><mo>&#160;</mo><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>&#8805;</mo><mo>&#160;</mo><mo>-</mo><mn>1</mn><mo>,</mo><mn>5</mn><mo>&#160;</mo><mo>&#8658;</mo><mo>&#160;</mo><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><mn>1</mn><mo>,</mo><mn>5</mn><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mn>2</mn><mo>(</mo><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>1</mn><mo>,</mo><mn>5</mn><mo>)</mo><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mn>2</mn><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>&#8201;</mo><mo>+</mo><mn>3</mn><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mn>3</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mfenced open="|" close="|"><mrow><mn>3</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><mi mathvariant="normal">a</mi></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><mn>2</mn><mi mathvariant="normal">a</mi></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V&#236;</mi><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#8658;</mo><mo>&#160;</mo><mfenced open="|" close="|"><mi mathvariant="normal">b</mi></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mi mathvariant="normal">b</mi></math></p> <p>Do vậy, biểu thức <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mfenced open="|" close="|"><mrow><mn>3</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><mi mathvariant="normal">a</mi></mrow></mfenced><mfenced open="|" close="|"><mi mathvariant="normal">b</mi></mfenced></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>3</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><mi mathvariant="normal">a</mi></mrow><mrow><mo>-</mo><mi mathvariant="normal">b</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>-</mo><mfrac><mrow><mn>3</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><mi mathvariant="normal">a</mi></mrow><mi mathvariant="normal">b</mi></mfrac></math>.</p> <p>Vậy&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mn>9</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>12</mn><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>4</mn><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup></mrow><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mrow><mn>3</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><mi mathvariant="normal">a</mi></mrow><mi mathvariant="normal">b</mi></mfrac></math>.</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">d</mi><mo>)</mo><mo>&#160;</mo><mfenced><mrow><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi></mrow></mfenced><mo>.</mo><msqrt><mfrac><mi>ab</mi><msup><mfenced><mrow><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi></mrow></mfenced><mn>2</mn></msup></mfrac></msqrt><mo>&#160;</mo><mi>v&#7899;i</mi><mo>&#160;</mo><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>0</mn><mo>.</mo></math></p> <p>Ta c&oacute;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi></mrow></mfenced><mo>.</mo><msqrt><mfrac><mi>ab</mi><msup><mfenced><mrow><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi></mrow></mfenced><mn>2</mn></msup></mfrac></msqrt><mo>&#160;</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mi>a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>b</mi></mrow></mfenced><mo>.</mo><mfrac><msqrt><mi>a</mi><mi>b</mi></msqrt><msqrt><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>b</mi></mrow></mfenced><mn>2</mn></msup></msqrt></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mi>a</mi><mo>-</mo><mi>b</mi></mrow></mfenced><mfrac><msqrt><mi>a</mi><mi>b</mi></msqrt><mfenced open="|" close="|"><mrow><mi>a</mi><mo>-</mo><mi>b</mi></mrow></mfenced></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mi>a</mi><mo>-</mo><mi>b</mi></mrow></mfenced><mfrac><msqrt><mi>a</mi><mi>b</mi></msqrt><mrow><mo>-</mo><mfenced><mrow><mi>a</mi><mo>-</mo><mi>b</mi></mrow></mfenced></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><msqrt><mi>a</mi><mi>b</mi></msqrt></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>V</mi><mi>&#236;</mi><mo>&#160;</mo><mi>a</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mi>b</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mi>n</mi><mi>&#234;</mi><mi>n</mi><mo>&#160;</mo><mi>a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>b</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#8658;</mo><mo>&#160;</mo><mfenced open="|" close="|"><mrow><mi>a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>b</mi></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfenced><mrow><mi>a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>b</mi></mrow></mfenced><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mi>a</mi><mo>.</mo><mi>b</mi><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn><mo>)</mo></math></p>
Hướng dẫn Giải Bài 34 (trang 19, SGK Toán 9, Tập 1)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 34 (trang 19, SGK Toán 9, Tập 1)
GV: GV colearn