Bài 4: Liên hệ giữa phép chia và phép khai phương
Hướng dẫn giải Bài 33 (Trang 19 SGK Toán 9, Tập 1)
<p><strong>B&agrave;i 33 (Trang 19 SGK To&aacute;n 9, Tập 1):</strong></p> <p>Giải phương tr&igrave;nh:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">a</mi><mo>)</mo><mo>&#160;</mo><msqrt><mn>2</mn></msqrt><mo>.</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mn>50</mn></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">b</mi><mo>)</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt><mo>.</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>+</mo><msqrt><mn>3</mn></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>12</mn></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mn>27</mn></msqrt><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">c</mi><mo>)</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt><mo>.</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mn>12</mn></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">d</mi><mo>)</mo><mo>&#160;</mo><mfrac><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><msqrt><mn>5</mn></msqrt></mfrac><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mn>20</mn></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>.</mo></math></p> <p>&nbsp;</p> <p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span></strong></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">a</mi><mo>)</mo><mo>&#160;</mo><msqrt><mn>2</mn></msqrt><mo>.</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mn>50</mn></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><msqrt><mn>2</mn></msqrt><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>50</mn></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mfrac><mn>50</mn><mn>2</mn></mfrac></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>25</mn></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>5</mn></math></p> <p>Vậy x = 5.</p> <p>&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">b</mi><mo>)</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt><mo>.</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>+</mo><msqrt><mn>3</mn></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>12</mn></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mn>27</mn></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><msqrt><mn>3</mn></msqrt><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>12</mn></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mn>27</mn></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><msqrt><mn>3</mn></msqrt><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>4</mn><mo>.</mo><mn>3</mn></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mn>9</mn><mo>.</mo><mn>3</mn></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><msqrt><mn>3</mn></msqrt><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><msqrt><mn>3</mn></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><msqrt><mn>3</mn></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>1</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>4</mn></math></p> <p>Vậy x = 4.</p> <p>&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">c</mi><mo>)</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt><mo>.</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mn>12</mn></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><msqrt><mn>3</mn></msqrt><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mn>12</mn></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><msqrt><mn>3</mn></msqrt><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>4</mn><mo>.</mo><mn>3</mn></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><msqrt><mn>3</mn></msqrt><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>4</mn></msqrt><mo>.</mo><msqrt><mn>3</mn></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>4</mn></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><msqrt><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>2</mn></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mfenced open="|" close="|"><mi mathvariant="normal">x</mi></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>2</mn></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>&#177;</mo><msqrt><mn>2</mn></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mi>V&#7853;y</mi><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>&#177;</mo><msqrt><mn>2</mn></msqrt></math></p>
Hướng dẫn Giải Bài 33 (trang 19, SGK Toán 9, Tập 1)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 33 (trang 19, SGK Toán 9, Tập 1)
GV: GV colearn