Bài 4: Liên hệ giữa phép chia và phép khai phương
Hướng dẫn giải Bài 30 (Trang 19 SGK Toán 9, Tập 1)
<p><strong>B&agrave;i 30 (Trang 19 SGK To&aacute;n 9, Tập 1):</strong></p> <p>R&uacute;t gọn c&aacute;c biểu thức:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">a</mi><mo>)</mo><mo>&#160;</mo><mfrac><mi mathvariant="normal">y</mi><mi mathvariant="normal">x</mi></mfrac><mo>.</mo><msqrt><mfrac><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><msup><mi mathvariant="normal">y</mi><mn>4</mn></msup></mfrac></msqrt><mo>&#160;</mo><mi>v&#7899;i</mi><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mi>v&#224;</mi><mo>&#160;</mo><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>&#8800;</mo><mn>0</mn><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">b</mi><mo>)</mo><mo>&#160;</mo><msup><mi mathvariant="normal">y</mi><mn>2</mn></msup><mo>.</mo><msqrt><mfrac><msup><mi mathvariant="normal">x</mi><mn>4</mn></msup><mrow><mn>4</mn><msup><mi mathvariant="normal">y</mi><mn>2</mn></msup></mrow></mfrac></msqrt><mo>&#160;</mo><mi>v&#7899;i</mi><mo>&#160;</mo><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>0</mn><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">c</mi><mo>)</mo><mo>&#160;</mo><mn>5</mn><mi>xy</mi><mo>.</mo><msqrt><mfrac><mrow><mn>25</mn><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup></mrow><msup><mi mathvariant="normal">y</mi><mn>6</mn></msup></mfrac></msqrt><mo>&#160;</mo><mi>v&#7899;i</mi><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mi>v&#224;</mi><mo>&#160;</mo><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>)</mo><mo>&#160;</mo><mn>0</mn><mo>,</mo><mn>2</mn><msup><mi>x</mi><mn>3</mn></msup><msup><mi>y</mi><mn>3</mn></msup><msqrt><mfrac><mn>16</mn><mrow><msup><mi>x</mi><mn>4</mn></msup><msup><mi>y</mi><mn>8</mn></msup></mrow></mfrac></msqrt><mo>&#160;</mo><mi>v</mi><mi>&#7899;</mi><mi>i</mi><mo>&#160;</mo><mi>x</mi><mo>&#8800;</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>&#8800;</mo><mn>0</mn><mo>.</mo></math></p> <p>&nbsp;</p> <p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span></strong></p> <p>a)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">a</mi><mo>)</mo><mo>&#160;</mo><mfrac><mi mathvariant="normal">y</mi><mi mathvariant="normal">x</mi></mfrac><mo>.</mo><msqrt><mfrac><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><msup><mi mathvariant="normal">y</mi><mn>4</mn></msup></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi mathvariant="normal">y</mi><mi mathvariant="normal">x</mi></mfrac><mo>.</mo><mfrac><mfenced open="|" close="|"><mi mathvariant="normal">x</mi></mfenced><msup><mi mathvariant="normal">y</mi><mn>2</mn></msup></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi mathvariant="normal">y</mi><mi mathvariant="normal">x</mi></mfrac><mo>.</mo><mfrac><mi mathvariant="normal">x</mi><msup><mi mathvariant="normal">y</mi><mn>2</mn></msup></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mi mathvariant="normal">y</mi></mfrac><mo>.</mo></math></p> <p>V&igrave; x &gt; 0 n&ecirc;n |x| = x : y<sup>2</sup> &gt; 0 với mọi&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>&#160;</mo><mo>&#8800;</mo><mo>&#160;</mo><mn>0</mn></math>.</p> <p>&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">b</mi><mo>)</mo><mo>&#160;</mo><mn>2</mn><msup><mi mathvariant="normal">y</mi><mn>2</mn></msup><mo>.</mo><msqrt><mfrac><msup><mi mathvariant="normal">x</mi><mn>4</mn></msup><mrow><mn>4</mn><msup><mi mathvariant="normal">y</mi><mn>2</mn></msup></mrow></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><msup><mi mathvariant="normal">y</mi><mn>2</mn></msup><mo>.</mo><mfrac><mfenced open="|" close="|"><mi mathvariant="normal">x</mi></mfenced><mrow><mn>2</mn><mi mathvariant="normal">y</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><msup><mi mathvariant="normal">y</mi><mn>2</mn></msup><mo>.</mo><mfrac><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mrow><mo>-</mo><mn>2</mn><mi mathvariant="normal">y</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mi mathvariant="normal">y</mi></math></p> <p>V&igrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>&#8805;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mi>v</mi><mi>&#7899;</mi><mi>i</mi><mo>&#160;</mo><mi>m</mi><mi>&#7885;</mi><mi>i</mi><mo>&#160;</mo><mi>x</mi><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mi>n</mi><mi>&#234;</mi><mi>n</mi><mo>&#160;</mo><mfenced open="|" close="|"><mrow><mn>2</mn><mi>y</mi></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>2</mn><mi>y</mi></math></p> <p>&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">c</mi><mo>)</mo><mo>&#160;</mo><mn>5</mn><mi>xy</mi><mo>.</mo><msqrt><mfrac><mrow><mn>25</mn><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup></mrow><mrow><msup><mi mathvariant="normal">x</mi><mn>4</mn></msup><msup><mi mathvariant="normal">y</mi><mn>8</mn></msup></mrow></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>&#160;</mo><mn>5</mn><mi>xy</mi><mfrac><mfenced open="|" close="|"><mrow><mn>5</mn><mi mathvariant="normal">x</mi></mrow></mfenced><msup><mi mathvariant="normal">y</mi><mn>3</mn></msup></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>5</mn><mi>xy</mi><mfrac><mrow><mo>-</mo><mn>5</mn><mi mathvariant="normal">x</mi></mrow><msup><mi mathvariant="normal">y</mi><mn>3</mn></msup></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>25</mn><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup></mrow><msup><mi mathvariant="normal">y</mi><mn>2</mn></msup></mfrac></math></p> <p>V&igrave; x &lt; 0 n&ecirc;n |5x| = -5x:y &gt; 0 n&ecirc;n |y<sup>3</sup>| = y<sup>3</sup>.</p> <p>&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>)</mo><mo>&#160;</mo><mn>0</mn><mo>,</mo><mn>2</mn><msup><mi>x</mi><mn>3</mn></msup><msup><mi>y</mi><mn>3</mn></msup><mo>.</mo><msqrt><mfrac><mn>16</mn><mrow><msup><mi>x</mi><mn>4</mn></msup><msup><mi>y</mi><mn>8</mn></msup></mrow></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>,</mo><mn>2</mn><msup><mi>x</mi><mn>3</mn></msup><msup><mi>y</mi><mn>3</mn></msup><mo>.</mo><mfrac><msqrt><mn>16</mn></msqrt><msqrt><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><msup><mi>y</mi><mn>4</mn></msup></mrow></mfenced><mn>2</mn></msup></msqrt></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>,</mo><mn>2</mn><msup><mi>x</mi><mn>3</mn></msup><msup><mi>y</mi><mn>3</mn></msup><mo>.</mo><mfrac><mn>4</mn><mfenced open="|" close="|"><mrow><msup><mi>x</mi><mn>2</mn></msup><msup><mi>y</mi><mn>4</mn></msup></mrow></mfenced></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>0</mn><mo>,</mo><mn>8</mn><mi>x</mi></mrow><mi>y</mi></mfrac></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>V</mi><mi>&#236;</mi><mo>&#160;</mo><msup><mi>x</mi><mn>2</mn></msup><msup><mi>y</mi><mn>4</mn></msup><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msup><mfenced><mrow><mi>x</mi><msup><mi>y</mi><mn>2</mn></msup></mrow></mfenced><mn>2</mn></msup><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mi>v</mi><mi>&#7899;</mi><mi>i</mi><mo>&#160;</mo><mi>m</mi><mi>&#7885;</mi><mi>i</mi><mo>&#160;</mo><mi>x</mi><mo>&#8800;</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>&#8800;</mo><mn>0</mn></mrow></mfenced></math></p>
Hướng dẫn Giải Bài 30 (trang 19, SGK Toán 9, Tập 1)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 30 (trang 19, SGK Toán 9, Tập 1)
GV: GV colearn