Bài 9: Hình Chữ Nhật
Hướng dẫn giải Bài 64 (Trang 100 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Cho h&igrave;nh b&igrave;nh h&agrave;nh&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-4" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-6" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span></span>. C&aacute;c tia ph&acirc;n gi&aacute;c của c&aacute;c g&oacute;c <span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>,</mo><mi>D</mi></math></span></span>&nbsp;cắt nhau như tr&ecirc;n h&igrave;nh&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mn&gt;91.&lt;/mn&gt;&lt;/math&gt;"><span id="MJXc-Node-16" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-17" class="mjx-mrow"><span id="MJXc-Node-18" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">91.</span></span></span></span></span>&nbsp;Chứng minh rằng&nbsp;<span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-19" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-20" class="mjx-mrow"><span id="MJXc-Node-21" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-22" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">F</span></span><span id="MJXc-Node-23" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">G</span></span><span id="MJXc-Node-24" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span></span>&nbsp;l&agrave; h&igrave;nh chữ nhật.&nbsp;</p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/05072022/b64-trand-100-sdk-toan-8-t-1-c2-ZOA535.jpg" /></p> <p><strong>Lời giải chi tiết</strong></p> <p>Theo giả thiết ABCD l&agrave; h&igrave;nh b&igrave;nh h&agrave;nh n&ecirc;n AD//BC, AB//CD<br />V&igrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>D</mi><mo>/</mo><mo>/</mo><mi>B</mi><mi>C</mi><mo>&rArr;</mo><mover accent="true"><mrow><mi>D</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup></math> (hai g&oacute;c trong c&ugrave;ng ph&iacute;a b&ugrave; nhau)<br />V&igrave; AG l&agrave; tia ph&acirc;n gi&aacute;c <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>D</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow><mo>^</mo></mover></mstyle></math> (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&rArr;</mo><mover accent="true"><mrow><mi>B</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>G</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>D</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>H</mi></mrow><mo>^</mo></mover><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>⁢</mo><mover accent="true"><mrow><mi>D</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow><mo>^</mo></mover></mstyle></math> (t&iacute;nh chất tia ph&acirc;n gi&aacute;c)<br />V&igrave; BG l&agrave; tia ph&acirc;n gi&aacute;c <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover></mstyle></math> (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&rArr;</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>G</mi></mrow><mo>^</mo></mover><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>⁢</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>⁢</mo></math><br />Do đ&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>B</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>G</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>G</mi></mrow><mo>^</mo></mover><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>⁢</mo><mrow><mo>(</mo><mover accent="true"><mrow><mi>D</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&sdot;</mo><msup><mn>180</mn><mn>0</mn></msup><mo>=</mo><msup><mn>90</mn><mn>0</mn></msup></mstyle></math><br />X&eacute;t <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>G</mi><mo>⁢</mo><mi>B</mi></mstyle></math> c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>B</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>G</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>G</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>90</mn><mn>0</mn></msup></mstyle></math><br />&Aacute;p dụng định l&iacute; tổng ba g&oacute;c trong một tam gi&aacute;c v&agrave;o tam gi&aacute;c AGB ta c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>B</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>G</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>G</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>G</mi><mo>⁢</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>=</mo><mpadded><msup><mn>180</mn><mn>0</mn></msup></mpadded><mspace linebreak="newline"></mspace><mo>&rArr;</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>G</mi><mo>⁢</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mrow><mo>(</mo><mover accent="true"><mrow><mi>B</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>G</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>G</mi></mrow><mo>^</mo></mover><mo>)</mo></mrow><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><msup><mn>90</mn><mn>0</mn></msup><mo>=</mo><msup><mn>90</mn><mn>0</mn></msup><mo>&nbsp;</mo><mrow><mo>(</mo><mmultiscripts><mo>)</mo><mprescripts></mprescripts><mo>*</mo></mmultiscripts></mrow></math></p> <p>+ V&igrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>A</mi><mi>B</mi><mo>/</mo><mo>/</mo><mi>D</mi><mi>C</mi><mo>&rArr;</mo><mover accent="true"><mrow><mi>D</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup></mstyle></math> (hai g&oacute;c trong c&ugrave;ng ph&iacute;a b&ugrave; nhau)<br />+ V&igrave; DE l&agrave; tia ph&acirc;n gi&aacute;c <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover></mstyle></math> (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&rArr;</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>H</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>E</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>⁢</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover></mstyle></math> (t&iacute;nh chất tia ph&acirc;n gi&aacute;c)<br />Do đ&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>D</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>H</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>H</mi></mrow><mo>^</mo></mover><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>⁢</mo><mrow><mo>(</mo><mover accent="true"><mrow><mi>D</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>)</mo></mrow></mstyle></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&sdot;</mo><msup><mn>180</mn><mn>0</mn></msup><mo>=</mo><msup><mn>90</mn><mn>0</mn></msup></mstyle></math><br />&Aacute;p dụng định l&iacute; tổng ba g&oacute;c trong một tam gi&aacute;c v&agrave;o tam gi&aacute;c ADH ta c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>D</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>H</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>H</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>H</mi><mo>⁢</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup></mstyle></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&rArr;</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>H</mi><mo>⁢</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mo>∘</mo></msup><mo>-</mo><mrow><mo>(</mo><mover accent="true"><mrow><mi>D</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>H</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>H</mi></mrow><mo>^</mo></mover><mo>)</mo></mrow><mo>=</mo><msup><mn>180</mn><mo>∘</mo></msup><mo>-</mo><msup><mn>90</mn><mo>∘</mo></msup><mo>=</mo><msup><mn>90</mn><mo>∘</mo></msup></mstyle></math><br />Suy ra <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>H</mi><mo>⟂</mo><mi>H</mi><mo>⁢</mo><mi>D</mi></math> n&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>E</mi><mo>⁢</mo><mi>H</mi><mo>⁢</mo><mi>G</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>90</mn><mo>∘</mo></msup></mstyle></math> (**)<br />Chứng minh tương tự:</p> <p>Ta c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>D</mi><mo>⁢</mo><mi>C</mi><mo>⁢</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup></mstyle></math> (hai g&oacute;c trong c&ugrave;ng ph&iacute;a b&ugrave; nhau)<br />M&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>E</mi><mo>⁢</mo><mi>C</mi><mo>⁢</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>⁢</mo><mover accent="true"><mrow><mi>D</mi><mo>⁢</mo><mi>C</mi><mo>⁢</mo><mi>B</mi></mrow><mo>^</mo></mover></mstyle></math> (do CE l&agrave; ph&acirc;n gi&aacute;c g&oacute;c DCB)<br />N&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>E</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>E</mi><mo>⁢</mo><mi>C</mi><mo>⁢</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>⁢</mo><mrow><mo>(</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>D</mi><mo>⁢</mo><mi>C</mi><mo>⁢</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&sdot;</mo><msup><mn>180</mn><mn>0</mn></msup><mo>=</mo><msup><mn>90</mn><mn>0</mn></msup></mstyle></math><br />Lại c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>E</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>E</mi><mo>⁢</mo><mi>C</mi><mo>⁢</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>D</mi><mo>⁢</mo><mi>E</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup></mstyle></math> (tổng ba g&oacute;c trong tam gi&aacute;c DEC)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&rArr;</mo><mover accent="true"><mrow><mi>D</mi><mo>⁢</mo><mi>E</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mrow><mo>(</mo><mover accent="true"><mrow><mi>E</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>E</mi><mo>⁢</mo><mi>C</mi><mo>⁢</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>)</mo></mrow><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><msup><mn>90</mn><mn>0</mn></msup><mo>=</mo><msup><mn>90</mn><mn>0</mn></msup></mstyle></math><br />Hay <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>H</mi><mo>⁢</mo><mi>E</mi><mo>⁢</mo><mi>F</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>90</mn><mn>0</mn></msup><mrow><mo>(</mo><mo>*</mo><mo>*</mo><mo>*</mo><mo>)</mo></mrow></mstyle></math><br />Từ <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mrow><mo>(</mo><mmultiscripts><mo>)</mo><mprescripts></mprescripts><mo>*</mo></mmultiscripts></mrow><mo>,</mo><mrow><mo>(</mo><mmultiscripts><mo>)</mo><mprescripts></mprescripts><mrow><mo>*</mo><mo>*</mo></mrow></mmultiscripts></mrow></mstyle></math> v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>*</mo><mo>&nbsp;</mo><mo>*</mo><mo>&nbsp;</mo><mo>*</mo><mo>)</mo></math> ta thấy tứ gi&aacute;c EFGH c&oacute; ba g&oacute;c vu&ocirc;ng n&ecirc;n<br />l&agrave; h&igrave;nh chữ nhật (dấu hiệu nhận biết h&igrave;nh chữ nhật)</p> <p>&nbsp;</p>
Xem lời giải bài tập khác cùng bài