Hướng dẫn giải Bài 65 (Trang 100 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề bài</strong></p>
<p>Tứ giác <span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi></math></span></span> có hai đường chéo vuông góc với nhau. Gọi <span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>,</mo><mi>F</mi><mo>,</mo><mi>G</mi><mo>,</mo><mi>H</mi></math>"><span id="MJXc-Node-7" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-8" class="mjx-mrow"><span id="MJXc-Node-9" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-10" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-11" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">F</span></span><span id="MJXc-Node-12" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-13" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">G</span></span><span id="MJXc-Node-14" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-15" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span></span> theo thứ tự là trung điểm của các cạnh <span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mo>,</mo><mi>B</mi><mi>C</mi><mo>,</mo><mi>C</mi><mi>D</mi><mo>,</mo><mi>D</mi><mi>A</mi></math>"><span id="MJXc-Node-16" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-17" class="mjx-mrow"><span id="MJXc-Node-18" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-19" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-20" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-21" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-22" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-23" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-24" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-25" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-26" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-27" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-28" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span></span></span>. Tứ giác <span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>F</mi><mi>G</mi><mi>H</mi></math>"><span id="MJXc-Node-29" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-30" class="mjx-mrow"><span id="MJXc-Node-31" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-32" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">F</span></span><span id="MJXc-Node-33" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">G</span></span><span id="MJXc-Node-34" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span></span>là hình gì ? Vì sao ?</p>
<p><strong class="content_detail">Lời giải chi tiết</strong></p>
<p><strong class="content_detail"><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/05072022/b65-trand-100-sdk-toan-8-t-1-c2-j2AW7x.jpg" /></strong></p>
<p><span class="content_detail">Vì E, F lần lượt là trung điểm của AB, BC (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>E</mi><mo>⁢</mo><mi>F</mi></mstyle></math> là đường trung bình của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mstyle></math> (dấu hiệu nhận biết đường trung bình của tam giác)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>E</mi><mi>F</mi><mo>/</mo><mo>/</mo><mi>A</mi><mi>C</mi></mstyle></math> và <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>F</mi><mo>=</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>C</mi></mrow><mn>2</mn></mfrac></math> (1) (tính chất đường trung bình của tam giác)<br />Do G, H lần lượt là trung điểm của CD, DA (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>H</mi><mo>⁢</mo><mi>G</mi></mstyle></math> là đường trung bình của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mstyle></math> (dấu hiệu nhận biết đường trung bình của tam giác)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>H</mi><mi>G</mi><mo>/</mo><mo>/</mo><mi>A</mi><mi>C</mi></mstyle></math> và <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mi>G</mi><mo>=</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>C</mi></mrow><mn>2</mn></mfrac></math> (2) (tính chất đường trung bình của tam giác)<br />Từ (1) và (2) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>E</mi><mi>F</mi><mo>/</mo><mo>/</mo><mi>H</mi><mi>G</mi></mstyle></math> và <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>E</mi><mo>⁢</mo><mi>F</mi><mo>=</mo><mi>H</mi><mo>⁢</mo><mi>G</mi><mspace/><mrow><mo>(</mo><mo>=</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>C</mi></mrow><mn>2</mn></mfrac><mo>)</mo></mrow></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>E</mi><mo>⁢</mo><mi>F</mi><mo>⁢</mo><mi>G</mi><mo>⁢</mo><mi>H</mi></mstyle></math> là hình bình hành (dấu hiệu nhận biết hình bình hành)<br />Vi E, H lần lượt là trung điểm của AB , AD (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>E</mi><mo>⁢</mo><mi>H</mi></mstyle></math> là đường trung bình của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>D</mi></mstyle></math> (dấu hiệu nhận biết đường trung bình của tam giác)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi>E</mi><mi>H</mi><mo>/</mo><mo>/</mo><mi>B</mi><mi>D</mi></mstyle></math> (tính chất đường trung bình của tam giác)<br /></span><span class="content_detail">Ta có: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>F</mi><mo>/</mo><mo>/</mo><mi>A</mi><mi>C</mi></math> và EH//BD mà <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>C</mi><mo>⟂</mo><mi>B</mi><mo>⁢</mo><mi>D</mi></math> nên <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>F</mi><mo>⟂</mo><mi>E</mi><mo>⁢</mo><mi>H</mi></math> </span></p>
<p><span class="content_detail">Hay <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>F</mi><mo>⁢</mo><mi>E</mi><mo>⁢</mo><mi>H</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>90</mn><mo>∘</mo></msup></mstyle></math></span><strong class="content_detail"><br /></strong></p>
<p>Hình bình hành EFGH có <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>E</mi><mo>^</mo></mover><mo>=</mo><msup><mn>90</mn><mn>0</mn></msup></mstyle></math> nên là hình chữ nhật (theo dấu hiệu nhận biết hình chữ nhật).</p>
Xem lời giải bài tập khác cùng bài