Bài 9: Hình Chữ Nhật
Hướng dẫn giải Bài 65 (Trang 100 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Tứ gi&aacute;c&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi></math></span></span>&nbsp;c&oacute; hai đường ch&eacute;o vu&ocirc;ng g&oacute;c với nhau. Gọi&nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-7" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-8" class="mjx-mrow"><span id="MJXc-Node-9" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-10" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-11" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">F</span></span><span id="MJXc-Node-12" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-13" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">G</span></span><span id="MJXc-Node-14" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-15" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span></span>&nbsp;theo thứ tự l&agrave; trung điểm của c&aacute;c cạnh&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-16" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-17" class="mjx-mrow"><span id="MJXc-Node-18" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-19" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-20" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-21" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-22" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-23" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-24" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-25" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-26" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-27" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-28" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span></span></span>. Tứ gi&aacute;c&nbsp;<span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-29" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-30" class="mjx-mrow"><span id="MJXc-Node-31" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-32" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">F</span></span><span id="MJXc-Node-33" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">G</span></span><span id="MJXc-Node-34" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span></span>l&agrave; h&igrave;nh g&igrave; ? V&igrave; sao ?</p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><strong class="content_detail"><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/05072022/b65-trand-100-sdk-toan-8-t-1-c2-j2AW7x.jpg" /></strong></p> <p><span class="content_detail">V&igrave; E, F lần lượt l&agrave; trung điểm của AB, BC (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>E</mi><mo>&#8290;</mo><mi>F</mi></mstyle></math> l&agrave; đường trung b&igrave;nh của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math> (dấu hiệu nhận biết đường trung b&igrave;nh của tam gi&aacute;c)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>E</mi><mi>F</mi><mo>/</mo><mo>/</mo><mi>A</mi><mi>C</mi></mstyle></math> v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>F</mi><mo>=</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>C</mi></mrow><mn>2</mn></mfrac></math> (1) (t&iacute;nh chất đường trung b&igrave;nh của tam gi&aacute;c)<br />Do G, H lần lượt l&agrave; trung điểm của CD, DA (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>H</mi><mo>&#8290;</mo><mi>G</mi></mstyle></math> l&agrave; đường trung b&igrave;nh của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math> (dấu hiệu nhận biết đường trung b&igrave;nh của tam gi&aacute;c)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>H</mi><mi>G</mi><mo>/</mo><mo>/</mo><mi>A</mi><mi>C</mi></mstyle></math> v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mi>G</mi><mo>=</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>C</mi></mrow><mn>2</mn></mfrac></math> (2) (t&iacute;nh chất đường trung b&igrave;nh của tam gi&aacute;c)<br />Từ (1) v&agrave; (2) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>E</mi><mi>F</mi><mo>/</mo><mo>/</mo><mi>H</mi><mi>G</mi></mstyle></math> v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>E</mi><mo>&#8290;</mo><mi>F</mi><mo>=</mo><mi>H</mi><mo>&#8290;</mo><mi>G</mi><mspace/><mrow><mo>(</mo><mo>=</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>C</mi></mrow><mn>2</mn></mfrac><mo>)</mo></mrow></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>E</mi><mo>&#8290;</mo><mi>F</mi><mo>&#8290;</mo><mi>G</mi><mo>&#8290;</mo><mi>H</mi></mstyle></math> l&agrave; h&igrave;nh b&igrave;nh h&agrave;nh (dấu hiệu nhận biết h&igrave;nh b&igrave;nh h&agrave;nh)<br />Vi E, H lần lượt l&agrave; trung điểm của AB , AD (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>E</mi><mo>&#8290;</mo><mi>H</mi></mstyle></math> l&agrave; đường trung b&igrave;nh của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math> (dấu hiệu nhận biết đường trung b&igrave;nh của tam gi&aacute;c)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>E</mi><mi>H</mi><mo>/</mo><mo>/</mo><mi>B</mi><mi>D</mi></mstyle></math> (t&iacute;nh chất đường trung b&igrave;nh của tam gi&aacute;c)<br /></span><span class="content_detail">Ta c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>F</mi><mo>/</mo><mo>/</mo><mi>A</mi><mi>C</mi></math> v&agrave; EH//BD m&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>C</mi><mo>&#10178;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></math> n&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>F</mi><mo>&#10178;</mo><mi>E</mi><mo>&#8290;</mo><mi>H</mi></math> </span></p> <p><span class="content_detail">Hay <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>F</mi><mo>&#8290;</mo><mi>E</mi><mo>&#8290;</mo><mi>H</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>90</mn><mo>&#8728;</mo></msup></mstyle></math></span><strong class="content_detail"><br /></strong></p> <p>H&igrave;nh b&igrave;nh h&agrave;nh EFGH c&oacute; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>E</mi><mo>^</mo></mover><mo>=</mo><msup><mn>90</mn><mn>0</mn></msup></mstyle></math> n&ecirc;n l&agrave; h&igrave;nh chữ nhật (theo dấu hiệu nhận biết h&igrave;nh chữ nhật).</p>
Xem lời giải bài tập khác cùng bài