Hỏi gia sư
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Chọn lớp
Lớp 6
Lớp 7
Lớp 8
Lớp 9
Lớp 10
Lớp 11
Lớp 12
Đăng ký
Đăng nhập
Trang chủ
Hỏi gia sư
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Trang chủ
/
Giải bài tập
/ Lớp 8 / Toán học /
Bài 9: Hình Chữ Nhật
Bài 9: Hình Chữ Nhật
Hướng dẫn giải Bài 58 (Trang 99 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề bài</strong></p> <p>Điền vào chỗ trống, biết rằng <span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mi>b</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mi>b</mi></math></span></span> là độ dài các cạnh, <span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-6" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-7" class="mjx-mrow"><span id="MJXc-Node-8" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span></span> là độ dài đường chéo của một hình chữ nhật.</p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/04072022/b58a-trand-99-sdk-toan-8-t-1-c2-BoEVTj.jpg" /></p> <p>Lời giải chi tiết</p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/04072022/b58b-trand-99-sdk-toan-8-t-1-c2-uTQo8T.jpg" /></p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/04072022/b58-trand-99-sdk-toan-8-t-1-c2-moOwSP.jpg" /></p> <p>Cột thứ hai:<br />Áp dụng định lí Pytago vào tam giác vuông ABC có <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>A</mi><mo></mo><mi>B</mi><mo></mo><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>90</mn><mo>∘</mo></msup></mstyle></math>, ta có:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>d</mi><mn>2</mn></msup><mo>=</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><msup><mn>5</mn><mn>2</mn></msup><mo>+</mo><msup><mn>12</mn><mn>2</mn></msup><mo>=</mo><mn>25</mn><mo>+</mo><mn>144</mn><mo>=</mo><mn>169</mn></math><br />Nên <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><msqrt><mn>169</mn></msqrt><mo>=</mo><mn>13</mn></math><br />Cột thứ ba:<br />Áp dụng định lí Pytago vào tam giác vuông ABC có <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>90</mn><mo>∘</mo></msup></mstyle></math>, ta có:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><mpadded><msup><mi>d</mi><mn>2</mn></msup></mpadded><mspace linebreak="newline"/><mo>⇒</mo><msup><mi>a</mi><mn>2</mn></msup><mo>=</mo><msup><mi>d</mi><mn>2</mn></msup><mo>-</mo><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><msup><mrow><mo>(</mo><msqrt><mn>10</mn></msqrt><mo>)</mo></mrow><mn>2</mn></msup><mo>-</mo><mpadded><msup><mrow><mo>(</mo><msqrt><mn>6</mn></msqrt><mo>)</mo></mrow><mn>2</mn></msup></mpadded><mspace linebreak="newline"/><mo mathvariant="italic"> </mo><mo mathvariant="italic"> </mo><mo mathvariant="italic"> </mo><mo mathvariant="italic"> </mo><mo mathvariant="italic"> </mo><mo mathvariant="italic"> </mo><mo mathvariant="italic"> </mo><mo mathvariant="italic"> </mo><mo mathvariant="italic"> </mo><mo>=</mo><mn>10</mn><mo>-</mo><mn>6</mn><mo>=</mo><mn>4</mn><mo>⇒</mo><mi>a</mi><mo>=</mo><msqrt><mn>4</mn></msqrt><mo>=</mo><mn>212841</mn></math><br />Cột thứ tư:<br />Áp dụng định lí Pytago vào tam giác vuông ABC có <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>90</mn><mo>∘</mo></msup></mstyle></math>, ta có:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><mpadded><msup><mi>d</mi><mn>2</mn></msup></mpadded><mspace linebreak="newline"/><mo>⇒</mo><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><msup><mi>d</mi><mn>2</mn></msup><mo>-</mo><msup><mi>a</mi><mn>2</mn></msup><mo>=</mo><msup><mn>7</mn><mn>2</mn></msup><mo>-</mo><mpadded><msup><mrow><mo>(</mo><msqrt><mn>13</mn></msqrt><mo>)</mo></mrow><mn>2</mn></msup></mpadded><mspace linebreak="newline"/><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo>=</mo><mn>49</mn><mo>-</mo><mn>13</mn><mo>=</mo><mn>36</mn><mo>⇒</mo><mi>b</mi><mo>=</mo><msqrt><mn>36</mn></msqrt><mo>=</mo><mn>6</mn></math></p> <p> </p>
Xem lời giải bài tập khác cùng bài
Hướng dẫn giải Bài 59 (Trang 99 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 60 (Trang 99 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 61 (Trang 99 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 62 (Trang 99 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 63 (Trang 100 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 64 (Trang 100 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 65 (Trang 100 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 66 (Trang 100 SGK Toán Hình học 8, Tập 1)
Xem lời giải