Bài 7. Trường hợp đồng dạng thứ ba
Hướng dẫn giải Bài 37 (Trang 79 SGK Toán Hình học 8, Tập 2)
<p>H&igrave;nh 44 cho biết <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>E</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>A</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>B</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>.</mo></math></p> <p><img src="https://img.loigiaihay.com/picture/2018/0718/b37-trang-79-sgk-toan-8-t2-c2.jpg" /></p> <p>LG a.<br />Trong h&igrave;nh vẽ, c&oacute; bao nhi&ecirc;u tam gi&aacute;c vu&ocirc;ng? H&atilde;y kể t&ecirc;n c&aacute;c tam gi&aacute;c đ&oacute;.<br />Phương ph&aacute;p giải:<br />&Aacute;p dụng: Tam gi&aacute;c c&oacute; 1 g&oacute;c vu&ocirc;ng l&agrave; tam gi&aacute;c vu&ocirc;ng.<br />Giải chi tiết:<br />Ta c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>E</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>A</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>B</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>C</mi></mrow><mo>^</mo></mover></mstyle></math> (giả thiết) m&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>B</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>C</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>90</mn><mo>&#8728;</mo></msup></mstyle></math> (do tam gi&aacute;c BCD vu&ocirc;ng tại C) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mover accent="true"><mrow><mi>E</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>A</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>C</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>90</mn><mn>0</mn></msup></mstyle></math><br />Vậy <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>E</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mo>&#8728;</mo></msup><mo>-</mo><mrow><mo>(</mo><mover accent="true"><mrow><mi>E</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>A</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>C</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>)</mo></mrow><mo>=</mo><msup><mn>180</mn><mo>&#8728;</mo></msup><mo>-</mo><msup><mn>90</mn><mo>&#8728;</mo></msup><mo>=</mo><msup><mn>90</mn><mo>&#8728;</mo></msup></mstyle></math><br />Vậy trong h&igrave;nh vẽ c&oacute; ba tam gi&aacute;c vu&ocirc;ng đ&oacute; l&agrave;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>E</mi><mo>,</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi><mo>,</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>E</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math><br />LG b.<br />Cho biết <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>A</mi><mo>&#8290;</mo><mi>E</mi><mo>=</mo><mpadded><mn>10</mn></mpadded><mo>&#8290;</mo><mi>cm</mi><mo>,</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>=</mo><mpadded><mn>15</mn></mpadded><mo>&#8290;</mo><mi>cm</mi><mo>,</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi><mo>=</mo><mpadded><mn>12</mn></mpadded><mo>&#8290;</mo><mi>cm</mi></mstyle></math>. H&atilde;y t&iacute;nh độ d&agrave;i c&aacute;c đoạn thẳng CD, BE, BD v&agrave; ED (l&agrave;m tr&ograve;n đến chữ số thập ph&acirc;n thứ nhất).<br />Phương ph&aacute;p giải:</p> <p>&Aacute;p dụng:<br />- Định l&iacute;: Nếu hai g&oacute;c của tam gi&aacute;c n&agrave;y lần lượt bằng hai g&oacute;c của tam gi&aacute;c kia th&igrave; hai tam gi&aacute;c đ&oacute; đồng dạng.<br />- T&iacute;nh chất hai tam gi&aacute;c đồng dạng.<br />- Định l&iacute; Pitago.<br />Giải chi tiết:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>E</mi></mstyle></math> v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>B</mi></mstyle></math> c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>=</mo><mover accent="true"><mi>C</mi><mo>^</mo></mover><mo>=</mo><mpadded><msup><mn>90</mn><mo>&#8728;</mo></msup></mpadded><mspace linebreak="newline"/><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>E</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>C</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mrow><mo>(</mo><mi>g</mi><mi>i</mi><mi>&#7843;</mi><mo>&#160;</mo><mi>t</mi><mi>h</mi><mi>i</mi><mi>&#7871;</mi><mi>t</mi><mo>)</mo></mrow><mspace linebreak="newline"/><mo>&#8658;</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>E</mi><mo>~</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>B</mi><mo>&#160;</mo><mrow><mo>(</mo><mi>g</mi><mo>-</mo><mi>g</mi><mo>)</mo></mrow><mspace linebreak="newline"/><mo>&#8658;</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mrow><mrow><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>E</mi></mrow><mrow><mi>C</mi><mo>&#8290;</mo><mi>B</mi></mrow></mfrac><mo>&#8290;</mo><mo>&#160;</mo><mrow><mo>(</mo><mi>t</mi><mi>&#237;</mi><mi>n</mi><mi>h</mi><mo>&#160;</mo><mi>c</mi><mi>h</mi><mi>&#7845;</mi><mi>t</mi><mo>&#160;</mo><mi>h</mi><mi>a</mi><mi>i</mi><mo>&#160;</mo><mi>t</mi><mi>a</mi><mi>m</mi><mo>&#160;</mo><mi>g</mi><mi>i</mi><mi>&#225;</mi><mi>c</mi><mo>&#160;</mo><mi>&#273;</mi><mi>&#7891;</mi><mi>n</mi><mi>g</mi><mo>&#160;</mo><mi>d</mi><mi>&#7841;</mi><mi>n</mi><mi>g</mi><mo>)</mo></mrow><mo>&#8290;</mo><mspace linebreak="newline"/><mo>&#8658;</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi><mo>=</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>.</mo><mi>C</mi><mo>&#8290;</mo><mi>B</mi></mrow><mrow><mi>A</mi><mo>&#8290;</mo><mi>E</mi></mrow></mfrac><mo>=</mo><mn>18</mn><mo>&#8290;</mo><mrow><mo>(</mo><mi>cm</mi><mo>)</mo></mrow><mo>&#8290;</mo></math><br />- &Aacute;p dụng định l&iacute; pitago ta c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>E</mi></mstyle></math> vu&ocirc;ng tại A<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mi>B</mi><mo>&#8290;</mo><mi>E</mi><mo>=</mo><msqrt><mi>A</mi><mo>&#8290;</mo><msup><mi>E</mi><mn>2</mn></msup><mo>+</mo><mi>A</mi><mo>&#8290;</mo><msup><mi>B</mi><mn>2</mn></msup></msqrt><mo>=</mo><msqrt><msup><mn>10</mn><mn>2</mn></msup><mo>+</mo><msup><mn>15</mn><mn>2</mn></msup></msqrt><mo>&#8776;</mo><mn>18</mn><mo>&#8290;</mo><mrow><mo>(</mo><mi>cm</mi><mo>)</mo></mrow></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math> vu&ocirc;ng tại C</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mrow><mo>&#8658;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi><mo>=</mo><msqrt><mi>B</mi><mo>&#8290;</mo><msup><mi>C</mi><mn>2</mn></msup><mo>+</mo><mi>D</mi><mo>&#8290;</mo><msup><mi>C</mi><mn>2</mn></msup></msqrt><mo>=</mo><msqrt><msup><mn>12</mn><mn>2</mn></msup><mo>+</mo><msup><mn>18</mn><mn>2</mn></msup></msqrt><mo>&#8776;</mo><mn>21</mn></mrow><mo>,</mo><mpadded><mn>6</mn></mpadded><mo>&#8290;</mo><mi>cm</mi></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>E</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math> vu&ocirc;ng tại B<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>&#8658;</mo><mi>E</mi><mo>&#8290;</mo><mi>D</mi><mo>=</mo><msqrt><mi>E</mi><mo>&#8290;</mo><msup><mi>B</mi><mn>2</mn></msup><mo>+</mo><mi>B</mi><mo>&#8290;</mo><msup><mi>D</mi><mn>2</mn></msup></msqrt><mo>=</mo><msqrt><mn>325</mn><mo>+</mo><mn>468</mn></msqrt><mo>&#8776;</mo><mn>28</mn></mrow><mo>,</mo><mn>2</mn><mo>&#8290;</mo><mrow><mo>(</mo><mi>cm</mi><mo>)</mo></mrow></math></p> <p>LG C.<br />So s&aacute;nh diện t&iacute;ch tam gi&aacute;c BDE với tổng diện t&iacute;ch hai tam gi&aacute;c AEB v&agrave; BCD.<br />Phương ph&aacute;p giải:<br />Sử dụng: C&ocirc;ng thức t&iacute;nh diện t&iacute;ch tam gi&aacute;c, diện t&iacute;ch h&igrave;nh thang.<br />Giải chi tiết:<br />Ta c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>E</mi></mrow></msub><mo>+</mo><mpadded><msub><mi>S</mi><mrow><mi>D</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mrow></msub></mpadded><mspace linebreak="newline"/><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>A</mi><mi>E</mi><mo>&#8901;</mo><mi>A</mi><mi>B</mi><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>B</mi><mi>C</mi><mo>&#8901;</mo><mi>C</mi><mpadded><mi>D</mi></mpadded><mspace linebreak="newline"/><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8901;</mo><mn>10</mn><mo>&#8901;</mo><mn>15</mn><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8901;</mo><mn>12</mn><mo>&#8901;</mo><mpadded><mn>18</mn></mpadded><mspace linebreak="newline"/><mo>=</mo><mn>75</mn><mo>+</mo><mn>108</mn><mo>=</mo><mpadded><mn>183</mn></mpadded><msup><mi>cm</mi><mn>2</mn></msup><mo>.</mo><mo>&#160;</mo><mspace linebreak="newline"/><mi>T</mi><mi>a</mi><mo>&#160;</mo><mi>c</mi><mi>&#243;</mi><mo>:</mo><mi>A</mi><mi mathvariant="normal">E</mi><mo>/</mo><mo>/</mo><mi>D</mi><mi>C</mi><mrow><mo>(</mo><mi>c</mi><mi>&#249;</mi><mi>n</mi><mi>g</mi><mo>&#10178;</mo><mi>A</mi><mi>C</mi><mo>)</mo></mrow><mo>&#8658;</mo><mi>A</mi><mi>C</mi><mi>D</mi><mi>E</mi><mo>&#160;</mo><mi>l</mi><mi>&#224;</mi><mo>&#160;</mo><mi>h</mi><mi>&#236;</mi><mi>n</mi><mi>h</mi><mo>&#160;</mo><mi>t</mi><mi>h</mi><mi>a</mi><mi>n</mi><mi>g</mi><mo>.</mo><mspace linebreak="newline"/><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>E</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8901;</mo><mrow><mo>(</mo><mi>A</mi><mi>E</mi><mo>+</mo><mi>C</mi><mi>D</mi><mo>)</mo></mrow><mo>&#8901;</mo><mi>A</mi><mpadded><mi>C</mi></mpadded><mspace linebreak="newline"/><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8901;</mo><mrow><mo>(</mo><mn>10</mn><mo>+</mo><mn>18</mn><mo>)</mo></mrow><mo>&#8901;</mo><mn>27</mn><mo>=</mo><mpadded><mn>378</mn></mpadded><mpadded><msup><mi>cm</mi><mn>2</mn></msup></mpadded><mspace linebreak="newline"/><mo>&#8658;</mo><msub><mi>S</mi><mrow><mi>E</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>E</mi></mrow></msub><mo>-</mo><mrow><mo>(</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>E</mi></mrow></msub><mo>+</mo><msub><mi>S</mi><mrow><mi>D</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>378</mn><mo>-</mo><mn>183</mn><mo>=</mo><mpadded><mn>195</mn></mpadded><mpadded><msup><mi>cm</mi><mn>2</mn></msup></mpadded><mspace linebreak="newline"/><msub><mi>S</mi><mrow><mi>E</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></mrow></msub><mo>&#62;</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>E</mi></mrow></msub><mo>+</mo><msub><mi>S</mi><mrow><mi>D</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mrow></msub><mrow><mo>(</mo><mn>195</mn><mo>&#62;</mo><mn>183</mn><mo>)</mo></mrow><mo>.</mo></math></p> <p>C&aacute;ch kh&aacute;c:&nbsp;</p> <p>C&aacute;c em c&oacute; thể thay độ d&agrave;i BE, BD t&iacute;nh được ở c&acirc;u b để t&iacute;nh diện t&iacute;ch tam gi&aacute;c EBD.</p>
Xem lời giải bài tập khác cùng bài