Bài 3: Diện Tích Tam Giác
Hướng dẫn giải Bài 20 (Trang 122 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Vẽ h&igrave;nh chữ nhật c&oacute; một cạnh bằng một cạnh của một tam gi&aacute;c cho trước v&agrave; c&oacute; diện t&iacute;ch bằng diện t&iacute;ch của tam gi&aacute;c đ&oacute;. Từ đ&oacute; suy ra một c&aacute;ch chứng minh kh&aacute;c về c&ocirc;ng thức t&iacute;nh diện t&iacute;ch tam gi&aacute;c.</p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p>Cho tam gi&aacute;c&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-4" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi></math></span></span>&nbsp;với đường cao&nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-6" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-7" class="mjx-mrow"><span id="MJXc-Node-8" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-9" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span></span></p> <p>Gọi&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-10" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-11" class="mjx-mrow"><span id="MJXc-Node-12" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">M</span></span><span id="MJXc-Node-13" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-14" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">N</span></span><span id="MJXc-Node-15" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-16" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">I</span></span></span></span></span>&nbsp;l&agrave; trung điểm của&nbsp;<span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;"><span id="MJXc-Node-17" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-18" class="mjx-mrow"><span id="MJXc-Node-19" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-20" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-21" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-22" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-23" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-24" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-25" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-26" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>.</mo></math></span></span></p> <p>Lấy&nbsp;<span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi></math></span></span>&nbsp;đối xứng với&nbsp;<span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-31" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-32" class="mjx-mrow"><span id="MJXc-Node-33" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">I</span></span></span></span></span>&nbsp;qua&nbsp;<span id="MathJax-Element-7-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-34" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-35" class="mjx-mrow"><span id="MJXc-Node-36" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">M</span></span><span id="MJXc-Node-37" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-38" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span></span>&nbsp;đối xứng với&nbsp;<span id="MathJax-Element-8-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-39" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-40" class="mjx-mrow"><span id="MJXc-Node-41" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">I</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math></span></span>&nbsp;qua&nbsp;<span id="MathJax-Element-9-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;"><span id="MJXc-Node-42" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-43" class="mjx-mrow"><span id="MJXc-Node-44" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">N</span></span><span id="MJXc-Node-45" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span></span></span></span></p> <p><span id="MathJax-Element-10-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo stretchy=&quot;false&quot;&gt;&amp;#x21D2;&lt;/mo&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">&rArr;</mo></math></span></span>&nbsp;H&igrave;nh chữ nhật&nbsp;<span id="MathJax-Element-11-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mi>E</mi><mi>D</mi><mi>C</mi></math></span></span>&nbsp;l&agrave; h&igrave;nh cần dựng.</p> <p><img src="https://img.loigiaihay.com/picture/2019/0416/h67-bai-20-trang-122-sgk-toan-8-t1_1.jpg" alt="" /></p> <p>Thật vậy:&nbsp;</p> <p>V&igrave;&nbsp;<span id="MathJax-Element-12-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-55" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-56" class="mjx-mrow"><span id="MJXc-Node-57" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span></span></span></span>&nbsp;đối xứng với&nbsp;<span id="MathJax-Element-13-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-58" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-59" class="mjx-mrow"><span id="MJXc-Node-60" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">I</span></span></span></span></span>&nbsp;qua&nbsp;<span id="MathJax-Element-14-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-61" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-62" class="mjx-mrow"><span id="MJXc-Node-63" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">M</span></span></span></span></span>&nbsp;n&ecirc;n&nbsp;<span id="MathJax-Element-15-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math></span></span>&nbsp;l&agrave; trung điểm của&nbsp;<span id="MathJax-Element-16-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-67" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-68" class="mjx-mrow"><span id="MJXc-Node-69" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-70" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">I</span></span></span></span></span></p> <p>Do đ&oacute;,&nbsp;<span id="MathJax-Element-17-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-71" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-72" class="mjx-mrow"><span id="MJXc-Node-73" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-74" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">M</span></span><span id="MJXc-Node-75" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-76" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">M</span></span><span id="MJXc-Node-77" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">I</span></span></span></span></span></p> <p>X&eacute;t hai tam gi&aacute;c&nbsp;<span id="MathJax-Element-18-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo&gt;&amp;#x2206;&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-78" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-79" class="mjx-mrow"><span id="MJXc-Node-80" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&Delta;</span></span><span id="MJXc-Node-81" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-82" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-83" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">M</span></span></span></span></span>&nbsp;v&agrave;&nbsp;<span id="MathJax-Element-19-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo&gt;&amp;#x2206;&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-84" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-85" class="mjx-mrow"><span id="MJXc-Node-86" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&Delta;</span></span><span id="MJXc-Node-87" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">I</span></span><span id="MJXc-Node-88" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-89" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">M</span></span></span></span></span>&nbsp;c&oacute;:</p> <p>+) MA=MB (do M l&agrave; trung điểm của AB)<br />+) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>B</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>E</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>I</mi></mrow><mo>^</mo></mover></mstyle></math> (đối đỉnh)<br />+) EM=MI (chứng minh tr&ecirc;n)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>E</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>M</mi><mo>=</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mrow><mo>(</mo><mi mathvariant="normal">c</mi><mo>-</mo><mi mathvariant="normal">g</mi><mo>-</mo><mi mathvariant="normal">c</mi><mo>)</mo></mrow></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><msub><mi>S</mi><mrow><mi>I</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>M</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>E</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>M</mi></mrow></msub></mstyle></math><br />V&igrave; D đối xứng với I qua N n&ecirc;n N l&agrave; trung điểm của DI<br />Do đ&oacute;, NI=ND<br />X&eacute;t hai tam gi&aacute;c <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>N</mi></mstyle></math> v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>N</mi></mstyle></math> c&oacute;:<br />+) IN=ND (chứng minh tr&ecirc;n)<br />+) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>N</mi><mo>&#8290;</mo><mi>I</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>D</mi><mo>&#8290;</mo><mi>N</mi><mo>&#8290;</mo><mi>C</mi></mrow><mo>^</mo></mover></mstyle></math> (đối đỉnh)<br />+) AN=NC (do <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">N</mi></mstyle></math> l&agrave; trung điểm của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>AC</mi></mstyle></math>)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>N</mi><mo>=</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>N</mi></mstyle></math> (c-g-c)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><msub><mi>S</mi><mrow><mi>D</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>N</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>I</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>N</mi></mrow></msub></mstyle></math><br />Ta c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mrow><mi>B</mi><mo>&#8290;</mo><mi>E</mi><mo>&#8290;</mo><mi>M</mi></mrow></msub><mo>+</mo><msub><mi>S</mi><mrow><mi>B</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>N</mi><mo>&#8290;</mo><mi>C</mi></mrow></msub><mo>+</mo><msub><mi>S</mi><mrow><mi>N</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>C</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>I</mi></mrow></msub><mo>+</mo><msub><mi>S</mi><mrow><mi>B</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>N</mi><mo>&#8290;</mo><mi>C</mi></mrow></msub><mo>+</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>N</mi></mrow></msub></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mrow><mo>&#8658;</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>E</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi mathvariant="normal">D</mi><mo>&#8290;</mo><mi>C</mi></mrow></msub><mo>=</mo><mi>B</mi><mo>&#8290;</mo><mi>E</mi></mrow><mo>.</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>H</mi><mo>.</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math> (v&igrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>B</mi><mi>E</mi><mo>=</mo><mi>I</mi><mi>H</mi><mo>=</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>H</mi></mrow><mn>2</mn></mfrac><mo>)</mo></mstyle></math></p> <p>Ta đ&atilde; t&igrave;m được c&ocirc;ng thức t&iacute;nh diện t&iacute;ch tam gi&aacute;c bằng một phương ph&aacute;p kh&aacute;c.<br />Ch&uacute; &yacute;: Theo c&aacute;ch dựng tr&ecirc;n ta c&oacute; BEDC l&agrave; h&igrave;nh chữ nhật v&igrave;:<br />+) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>MN</mi></mstyle></math> l&agrave; đường trung b&igrave;nh của tam gi&aacute;c <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>ABC</mi></mstyle></math> n&ecirc;n MN//BC hay ED//BC<br />+) Vi <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>E</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>M</mi><mo>=</mo><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>M</mi></mstyle></math> n&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>E</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>M</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>M</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>I</mi></mrow><mo>^</mo></mover></math>&nbsp;m&agrave; hai g&oacute;c n&agrave;y ở<br />vị tr&iacute; so le trong n&ecirc;n EB//AI hay EB//AH<br />+) Vi <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>N</mi><mo>=</mo><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>N</mi></mstyle></math> n&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>D</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>N</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>N</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>I</mi></mrow><mo>^</mo></mover></mstyle></math> m&agrave; hai g&oacute;c n&agrave;y ở<br />vị tr&iacute; so le trong n&ecirc;n DC//AI<br />Do đ&oacute; EB//DC v&agrave; ED//BC n&ecirc;n BEDC l&agrave; h&igrave;nh b&igrave;nh h&agrave;nh<br />M&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>A</mi><mi>H</mi><mo>&#10178;</mo><mi>B</mi><mi>C</mi><mo>,</mo><mi>E</mi><mi>B</mi><mo>/</mo><mo>/</mo><mi>A</mi><mi>H</mi></mstyle></math> n&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>E</mi><mo>&#8290;</mo><mi>B</mi><mo>&#10178;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math>, suy ra BEDC l&agrave; h&igrave;nh chữ nhật.</p> <p><br /><br /></p> <p>&nbsp;</p>
Xem lời giải bài tập khác cùng bài