Bài 3: Diện Tích Tam Giác
Hướng dẫn giải Bài 18 (Trang 121 SGK Toán Hình học 8, Tập 1)
<p>Đề b&agrave;i<br />Cho tam gi&aacute;c ABC v&agrave; đường trung tuyến AM (h.132). Chứng minh rằng:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>B</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>C</mi></mrow></msub><mo>&#8290;</mo></math></p> <p><img src="https://img.loigiaihay.com/picture/2018/0716/b18a-trang-121-sgk-toan-8-t-1-c2.jpg" /></p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><img src="https://img.loigiaihay.com/picture/2018/0716/b18b-trang-121-sgk-toan-8-t-1-c2.jpg" alt="" /></p> <p>Dựng&nbsp;<span id="MathJax-Element-7-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-44" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-45" class="mjx-mrow"><span id="MJXc-Node-46" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-47" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span></span>&nbsp;l&agrave; đường cao của&nbsp;<span id="MathJax-Element-8-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi mathvariant=&quot;normal&quot;&gt;&amp;#x0394;&lt;/mi&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">&Delta;</mi><mi>A</mi><mi>B</mi><mi>C</mi></math></span></span>, khi đ&oacute;&nbsp;<span id="MathJax-Element-9-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi mathvariant=&quot;normal&quot;&gt;&amp;#x0394;&lt;/mi&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi mathvariant=&quot;normal&quot;&gt;&amp;#x0394;&lt;/mi&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-54" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-55" class="mjx-mrow"><span id="MJXc-Node-56" class="mjx-mi"><span class="mjx-char MJXc-TeX-main-R">&Delta;</span></span><span id="MJXc-Node-57" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-58" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-59" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">M</span></span><span id="MJXc-Node-60" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-61" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">&Delta;</span></span><span id="MJXc-Node-62" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-63" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">M</span></span><span id="MJXc-Node-64" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span></span></span>&nbsp;c&oacute; chung chiều cao&nbsp;<span id="MathJax-Element-10-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>H</mi></math></span></span>.</p> <p>Ta c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>B</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>M</mi><mo>.</mo><mi>A</mi><mo>&#8290;</mo><mi>H</mi></mstyle></math> (chiều cao AH v&agrave; cạnh đ&aacute;y BM)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>C</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>M</mi><mo>.</mo><mi>A</mi><mo>&#8290;</mo><mi>H</mi></mstyle></math> (chiều cao AH v&agrave; cạnh đ&aacute;y CM)<br />M&agrave; BM=CM (v&igrave; AM l&agrave; đường trung tuyến)<br />Vậy <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>B</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>C</mi></mrow></msub><mo>.</mo></math></p> <p>&nbsp;</p>
Xem lời giải bài tập khác cùng bài