Bài 3: Hình Thang Cân
Hướng dẫn giải Bài 15 (Trang 75 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Cho <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math> c&acirc;n tại A. Tr&ecirc;n c&aacute;c cạnh b&ecirc;n AB, AC lấy theo thứ tự c&aacute;c điểm D v&agrave; E sao cho AD=AE.<br />a) Chứng minh rằng BDEC l&agrave; h&igrave;nh thang c&acirc;n.<br />b) T&iacute;nh c&aacute;c g&oacute;c của h&igrave;nh thang c&acirc;n đ&oacute;, biết rằng <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>=</mo><msup><mn>50</mn><mo>&#8728;</mo></msup><mo>.</mo></math></p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><img src="https://vietjack.com/giai-toan-lop-8/images/bai-15-trang-75-sgk-toan-8-tap-1-1.PNG" alt="Giải b&agrave;i 15 trang 75 To&aacute;n 8 Tập 1 | Giải b&agrave;i tập To&aacute;n 8" /></p> <p>a) Ta c&oacute; AD=AE (giả thiết) n&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>E</mi></mstyle></math> c&acirc;n (dấu hiệu nhận biết tam gi&aacute;c c&acirc;n)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mover accent="true"><msub><mi>D</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><mover accent="true"><msub><mi>E</mi><mn>1</mn></msub><mo>^</mo></mover></mstyle></math> (t&iacute;nh chất tam gi&aacute;c c&acirc;n)<br />X&eacute;t <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>E</mi></mstyle></math> c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><msub><mi>D</mi><mn>1</mn></msub><mo>^</mo></mover><mo>+</mo><mover accent="true"><msub><mi>E</mi><mn>1</mn></msub><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup></mstyle></math> (định l&yacute; tổng ba g&oacute;c trong tam gi&aacute;c)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mn>2</mn><mo>&#8290;</mo><mover accent="true"><msub><mi>D</mi><mn>1</mn></msub><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>=</mo><mpadded><msup><mn>180</mn><mn>0</mn></msup></mpadded><mo>&#8290;</mo><mspace linebreak="newline"/><mo>&#8658;</mo><mover accent="true"><msub><mi>D</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><mfrac><mrow><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mover accent="true"><mi>A</mi><mo>^</mo></mover></mrow><mn>2</mn></mfrac><mo>&#8290;</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math><br />V&igrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math> c&acirc;n tại <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>&#160;</mo><mrow><mo>(</mo><mi>g</mi><mo>&#8290;</mo><mi>t</mi><mo>)</mo></mrow><mo>&#8658;</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>=</mo><mover accent="true"><mi>C</mi><mo>^</mo></mover></math> (t&iacute;nh chất tam gi&aacute;c c&acirc;n)<br />M&agrave;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>C</mi><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup></mstyle></math> (định l&yacute; tổng ba g&oacute;c trong tam gi&aacute;c)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mover accent="true"><mrow><mn>2</mn><mo>&#8290;</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>=</mo><mpadded><msup><mn>180</mn><mn>0</mn></msup></mpadded><mo>&#8290;</mo><mspace linebreak="newline"/><mo>&#8658;</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>=</mo><mfrac><mrow><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mover accent="true"><mi>A</mi><mo>^</mo></mover></mrow><mn>2</mn></mfrac><mo>&#8290;</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow><mo>&#8290;</mo></math><br />Từ (1) v&agrave; (2) <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mover accent="true"><msub><mi>D</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover></math>, m&agrave; hai g&oacute;c n&agrave;y l&agrave; hai g&oacute;c đồng vị n&ecirc;n suy ra DE//BC</p> <p>(dấu hiệu nhận biết hai đường thẳng song song)</p> <p>Do đ&oacute; BDEC l&agrave; h&igrave;nh thang (dấu hiệu nhận biết h&igrave;nh thang).<br />Lại c&oacute; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>=</mo><mover accent="true"><mi>C</mi><mo>^</mo></mover></mstyle></math> (chứng minh tr&ecirc;n)<br />N&ecirc;n BDEC l&agrave; h&igrave;nh thang c&acirc;n (dấu hiệu nhận biết h&igrave;nh thang c&acirc;n).</p> <p>b) Với <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>=</mo><msup><mn>50</mn><mo>&#8728;</mo></msup></mstyle></math><br />Ta được <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>=</mo><mover accent="true"><mi>C</mi><mo>^</mo></mover><mo>=</mo><mfrac><mrow><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mover accent="true"><mi>A</mi><mo>^</mo></mover></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><msup><mn>50</mn><mn>0</mn></msup></mrow><mn>2</mn></mfrac><mo>=</mo><msup><mn>65</mn><mo>&#8728;</mo></msup></mstyle></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>=</mo><mover accent="true"><mi>C</mi><mo>^</mo></mover><mo>=</mo><mfrac><mrow><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mover accent="true"><mi>A</mi><mo>^</mo></mover></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><msup><mn>50</mn><mn>0</mn></msup></mrow><mn>2</mn></mfrac><mo>=</mo><msup><mn>65</mn><mo>&#8728;</mo></msup></mstyle></math> (2 g&oacute;c trong c&ugrave;ng ph&iacute;a b&ugrave; nhau)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mover accent="true"><msub><mi>D</mi><mn>2</mn></msub><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><msup><mn>65</mn><mn>0</mn></msup><mo>=</mo><msup><mn>115</mn><mn>0</mn></msup></mstyle></math><br />M&agrave; BDEC l&agrave; h&igrave;nh thang c&acirc;n (chứng minh tr&ecirc;n)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mover accent="true"><msub><mi>D</mi><mn>2</mn></msub><mo>^</mo></mover><mo>=</mo><mover accent="true"><msub><mi>E</mi><mn>2</mn></msub><mo>^</mo></mover><mo>=</mo><msup><mn>115</mn><mn>0</mn></msup></mstyle></math> (t&iacute;nh chất h&igrave;nh thang c&acirc;n)</p>
Xem lời giải bài tập khác cùng bài