Bài 3: Hình Thang Cân
Hướng dẫn giải Bài 17 (Trang 75 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p><span class="content_question">H&igrave;nh thang ABCD (AB//CD) c&oacute; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>B</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>C</mi></mrow><mo>^</mo></mover></mstyle></math>. Chứng minh rằng ABCD l&agrave; h&igrave;nh thang c&acirc;n.</span><strong class="content_question"><br /></strong></p> <p><strong><span class="content_question">Lời giải chi tiết</span></strong></p> <p><img src="https://vietjack.com/giai-toan-lop-8/images/bai-17-trang-75-sgk-toan-8-tap-1-3.PNG" alt="Giải b&agrave;i 17 trang 75 To&aacute;n 8 Tập 1 | Giải b&agrave;i tập To&aacute;n 8" /></p> <p><span class="content_question">Gọi E l&agrave; giao điểm của AC v&agrave; BD.<br />X&eacute;t <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>E</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math> c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><msub><mi>C</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><mover accent="true"><msub><mi>D</mi><mn>1</mn></msub><mo>^</mo></mover></mstyle></math> (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>E</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi mathvariant="normal">D</mi></mstyle></math> c&acirc;n tại E (dấu hiệu nhận biết tam gi&aacute;c c&acirc;n).<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>E</mi><mo>&#8290;</mo><mi>C</mi><mo>=</mo><mi>E</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math> (t&iacute;nh chất tam gi&aacute;c c&acirc;n) (1)<br />Ta c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>AB</mi><mo>/</mo><mo>/</mo><mi>DC</mi><mo>&#160;</mo><mo>(</mo><mi>g</mi><mi>i</mi><mi>&#7843;</mi><mo>&#160;</mo><mi>t</mi><mi>h</mi><mi>i</mi><mi>&#7871;</mi><mi>t</mi><mo>)</mo><mo>&#8658;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mover accent="true"><mrow><mi>B</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi mathvariant="normal">E</mi></mrow><mo>^</mo></mover><mo>=</mo><mpadded><mover accent="true"><msub><mi>C</mi><mn>1</mn></msub><mo>^</mo></mover></mpadded></mtd></mtr><mtr><mtd><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi mathvariant="normal">E</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><msub><mi>D</mi><mn>1</mn></msub><mo>^</mo></mover></mtd></mtr></mtable></mfenced></mstyle></math> (so le trong)<br />M&agrave;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><msub><mi>C</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><mover accent="true"><msub><mi>D</mi><mn>1</mn></msub><mo>^</mo></mover></mstyle></math> (giả thiết) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mover accent="true"><mrow><mi>B</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi mathvariant="normal">E</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi mathvariant="normal">E</mi></mrow><mo>^</mo></mover><mo>&#8658;</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>E</mi></mstyle></math> c&acirc;n tại E (dấu hiệu nhận biết tam gi&aacute;c c&acirc;n)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>A</mi><mo>&#8290;</mo><mi>E</mi><mo>=</mo><mi>B</mi><mo>&#8290;</mo><mi>E</mi></mstyle></math> (t&iacute;nh chất tam gi&aacute;c c&acirc;n) (2)<br />Lại c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>A</mi><mo>&#8290;</mo><mi>C</mi><mo>=</mo><mi>A</mi><mo>&#8290;</mo><mi mathvariant="normal">E</mi><mo>+</mo><mi>E</mi><mo>&#8290;</mo><mpadded><mi>C</mi></mpadded></mtd></mtr><mtr><mtd><mi>B</mi><mo>&#8290;</mo><mi mathvariant="normal">D</mi><mo>=</mo><mi>B</mi><mo>&#8290;</mo><mi>E</mi><mo>+</mo><mi>D</mi><mo>&#8290;</mo><mi>E</mi></mtd></mtr></mtable></mfenced><mo>(</mo><mn>3</mn><mo>)</mo></math><br />Từ' (1),(2) v&agrave; (3) suy ra AC=BD.<br />Suy ra h&igrave;nh thang ABCD l&agrave; h&igrave;nh thang c&acirc;n (dấu hiệu nhận biết h&igrave;nh thang).<br /></span></p>
Xem lời giải bài tập khác cùng bài