Bài 3: Hình Thang Cân
Hướng dẫn giải Bài 16 (Trang 75 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Cho tam gi&aacute;c ABC c&acirc;n tại A, c&aacute;c đường ph&acirc;n gi&aacute;c BD, CE (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>&#8712;</mo><mi>A</mi><mo>&#8290;</mo><mi>C</mi><mo>,</mo><mi>E</mi><mo>&#8712;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi></math>). Chứng minh rằng BEDC l&agrave; h&igrave;nh thang</p> <p>c&acirc;n c&oacute; đ&aacute;y nhỏ bằng cạnh b&ecirc;n.</p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><img src="https://vietjack.com/giai-toan-lop-8/images/bai-16-trang-75-sgk-toan-8-tap-1-3.PNG" alt="Giải b&agrave;i 16 trang 75 To&aacute;n 8 Tập 1 | Giải b&agrave;i tập To&aacute;n 8" /></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math> c&acirc;n tại A (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>=</mo><mi>A</mi><mo>&#8290;</mo><mpadded><mi>C</mi></mpadded></mtd></mtr><mtr><mtd><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>B</mi></mrow><mo>^</mo></mover></mtd></mtr></mtable></mfenced></mstyle></math> (t&iacute;nh chất tam gi&aacute;c c&acirc;n)<br />V&igrave; BD, CE lần lượt l&agrave; ph&acirc;n gi&aacute;c của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mrow><mo>^</mo></mover></mstyle></math> v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>B</mi></mrow><mo>^</mo></mover></mstyle></math> (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mover accent="true"><msub><mi>B</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><mover accent="true"><msub><mi>B</mi><mn>2</mn></msub><mo>^</mo></mover><mo>=</mo><mpadded><mfrac><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mrow><mo>^</mo></mover><mn>2</mn></mfrac></mpadded></mtd></mtr><mtr><mtd><mover accent="true"><msub><mi>C</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><mover accent="true"><msub><mi>C</mi><mn>2</mn></msub><mo>^</mo></mover><mo>=</mo><mfrac><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>B</mi></mrow><mo>^</mo></mover><mn>2</mn></mfrac></mtd></mtr></mtable></mfenced></mstyle></math> (t&iacute;nh chất tia ph&acirc;n gi&aacute;c)<br />M&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>B</mi></mrow><mo>^</mo></mover></mstyle></math> (chứng minh tr&ecirc;n)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mover accent="true"><msub><mi>B</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><mover accent="true"><msub><mi>B</mi><mn>2</mn></msub><mo>^</mo></mover><mo>=</mo><mover accent="true"><msub><mi>C</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><mover accent="true"><msub><mi>C</mi><mn>2</mn></msub><mo>^</mo></mover><mo>&#8290;</mo></math><br />X&eacute;t <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math> v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>E</mi></mstyle></math> c&oacute;:<br />+) AB=AC (chứng minh tr&ecirc;n)<br />+) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>A</mi><mo>^</mo></mover></mstyle></math> chung<br />+) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><msub><mi>B</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><mover accent="true"><msub><mi>C</mi><mn>1</mn></msub><mo>^</mo></mover></mstyle></math> (chứng minh tr&ecirc;n)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi mathvariant="normal">&#9651;</mi><mi>A</mi><mi>B</mi><mi>D</mi><mo>=</mo><mi mathvariant="normal">&#9651;</mi><mi>A</mi><mi>C</mi><mi>E</mi><mrow><mo>(</mo><mi>g</mi><mo>.</mo><mi>c</mi><mo>.</mo><mi>g</mi><mo>)</mo></mrow></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>A</mi><mo>&#8290;</mo><mi mathvariant="normal">D</mi><mo>=</mo><mi>A</mi><mo>&#8290;</mo><mi mathvariant="normal">E</mi></mstyle></math> (2 cạnh tương ứng).<br />Ta c&oacute; AD=AE (chứng minh tr&ecirc;n) n&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>E</mi></math>$ c&acirc;n tại A (dấu hiệu nhận biết tam gi&aacute;c c&acirc;n)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>E</mi><mo>&#8290;</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>E</mi></mrow><mo>^</mo></mover></mstyle></math> (t&iacute;nh chất tam gi&aacute;c c&acirc;n)</p>
Xem lời giải bài tập khác cùng bài