Ôn tập chương IV - Giới hạn
Hướng dẫn giải Bài 6 (Trang 142 SGK Toán Đại số & Giải tích 11)
<p>Cho hai h&agrave;m số :</p> <p>f(x)=&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow><msup><mi>x</mi><mrow><mn>2</mn><mo>&#160;</mo></mrow></msup></mfrac><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>&#160;</mo><mo>=</mo><mfrac><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow><msup><mi>x</mi><mn>2</mn></msup></mfrac></math></p> <p>a) T&iacute;nh:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mrow><mi>l</mi><mi>i</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>&#8594;</mo><mn>0</mn></mrow></munder><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><munder><mrow><mi>l</mi><mi>i</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>&#8594;</mo><mn>0</mn></mrow></munder><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>;</mo><mo>&#160;</mo><munder><mrow><mi>l</mi><mi>i</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>&#8594;</mo><mo>&#8734;</mo></mrow></munder><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>;</mo><mo>&#160;</mo><munder><mrow><mi>l</mi><mi>i</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>&#8594;</mo><mo>&#8734;</mo></mrow></munder><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></p> <p>b) Hai đường cong sau đ&acirc;y (h.60) l&agrave; hai đồ thị của h&agrave;m số đ&atilde; cho. Từ kết quả c&acirc;u a) h&atilde;y x&aacute;c định xem đường cong n&agrave;o l&agrave; đồ thị của mỗi h&agrave;m số đ&oacute;.</p> <p><img class="wscnph" src="https://static.colearn.vn:8413/v1.0/upload/library/26022022/ab3ab194-e138-41de-a907-1ea54516cd00.PNG" /></p> <p>Giải</p> <p>a)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mrow><mi>l</mi><mi>i</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>&#8594;</mo><mn>0</mn></mrow></munder><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><munder><mrow><mi>l</mi><mi>i</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>&#8594;</mo><mn>0</mn></mrow></munder><mfrac><mrow><mn>1</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow><msup><mi>x</mi><mn>2</mn></msup></mfrac><mo>=</mo><mo>&#160;</mo><mo>+</mo><mo>&#8734;</mo><mo>&#160;</mo><mi>v</mi><mi>&#236;</mi><mo>&#160;</mo><mo>&#160;</mo><munder><mrow><mi>l</mi><mi>i</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>&#8594;</mo><mn>0</mn></mrow></munder><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mn>1</mn><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><munder><mrow><mi>l</mi><mi>i</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>&#8594;</mo><mn>0</mn></mrow></munder><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&#62;</mo><mn>0</mn><mo>&#160;</mo></math><img class="wscnph" src="https://static.colearn.vn:8413/v1.0/upload/library/26022022/f957657b-6973-4925-8434-704844092aa1.PNG" /></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><munder><mrow><mi>l</mi><mi>i</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>&#8594;</mo><mn>0</mn></mrow></munder><mi>g</mi><mo>&#160;</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>&#160;</mo><mo>=</mo><munder><mrow><mi>l</mi><mi>i</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>&#8594;</mo><mn>0</mn></mrow></munder><mfrac><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow><msup><mi>x</mi><mn>2</mn></msup></mfrac><mo>=</mo><mo>+</mo><mo>&#8734;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#160;</mo><munder><mrow><mi>l</mi><mi>i</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>&#8594;</mo><mo>&#8734;</mo></mrow></munder><mi>f</mi><mo>&#160;</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>&#160;</mo><mo>=</mo><munder><mrow><mi>l</mi><mi>i</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>&#8594;</mo><mo>&#8734;</mo></mrow></munder><mfrac><mrow><mn>1</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow><msup><mi>x</mi><mn>2</mn></msup></mfrac><mo>=</mo><munder><mrow><mi>l</mi><mi>i</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>&#8594;</mo><mo>&#8734;</mo></mrow></munder><mfrac><mrow><mstyle displaystyle="true"><mfrac><mn>1</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></mstyle><mo>-</mo><mn>1</mn></mrow><mn>1</mn></mfrac><mo>=</mo><mo>-</mo><mn>1</mn></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mrow><mi>l</mi><mi>i</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>&#8594;</mo><mo>&#8734;</mo></mrow></munder><mi>g</mi><mo>&#160;</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>&#160;</mo><mo>&#160;</mo><mo>=</mo><munder><mrow><mi>l</mi><mi>i</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>&#8594;</mo><mo>&#8734;</mo></mrow></munder><mfrac><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow><msup><mi>x</mi><mn>2</mn></msup></mfrac><mo>=</mo><mo>&#160;</mo><munder><mrow><mi>l</mi><mi>i</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>&#8594;</mo><mo>&#8734;</mo></mrow></munder><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></mrow></mfenced><mo>=</mo><mo>&#160;</mo><mo>+</mo><mo>&#8734;</mo></math></p> <p>b) Đường cong thứ nhất l&agrave; đồ thị của h&agrave;m số y = g(x), đường cong thứ hai l&agrave; đồ thị của h&agrave;m số y = f(x)</p>
Xem lời giải bài tập khác cùng bài